
1

An 11th century proof search algorithm

Wilfrid Hodges
Okehampton, England

July 2013
http://wilfridhodges.co.uk

2

Al-Khwārizmı̄, early 9th century,
gave algorithms their name but not their definition:

Al-Khwārizmı̄

+
algorismus

+
algorithm

3

Al-Khwārizmı̄’s algorithms were uniform deterministic
procedures for solving any equations within a given class.

As Roshdi Rashed has emphasised,
Al-Khwārizmı̄ not only described the procedures;
he proved their correctness (i.e. that they give correct
solutions for all equations in the class).
For this he used Euclid’s geometry.

4

Al-Khalı̄l, the inventor of dictionaries (8th century),
had already given some enumeration algorithms,
i.e. uniform deterministic procedures for listing the
elements of any set in a given class of sets,
but without correctness proofs.

Typical example: lexicographic ordering of the finite
strings of symbols from an ordered set of symbols.
(Well known to later Arabic mathematicians.)



5

Ibn Sı̄nā (Avicenna) in the 1020s gave what may be the
first search algorithm: a uniform procedure for finding
objects of a certain kind within sets of a certain kind.

Typical modern example: Dijkstra’s algorithm for finding
shortest path between two nodes in a weighted graph.

Ibn Sı̄nā’s algorithm was a proof search algorithm,
for finding a complete formal proof,
given an incomplete proof of the same conclusion.
His logical calculus was compound syllogisms.
No other non-trivial proof search algorithms are known
before the 20th century.

6

In a sense, proof search algorithms are the most general
kind of search algorithm.
The programming language PROLOG searches for an
object O by searching for a proof that O exists.
It uses the logic of Horn clauses,
a fragment of first-order logic that includes syllogisms.

The classic specification of PROLOG’s search procedure
by Börger and Rosenzweig (1995) serves as a standard for
description of proof search algorithms.

7

Compound syllogisms are of arbitrarily high complexity:

‘In demonstrative reasoning there is nothing wrong
with having proofs that run to a thousand steps.’
(Ibn Sı̄nā Burhān 201 (Afifi))

So a proof search algorithm has to be built around
recursion,
typically with a backtracking procedure that uses an
enumeration of all possible search routes.

8

Ibn Sı̄nā’s recursion loop (my analysis):

SELECT�report �

HHHHY

SYNTHESISE - report

ACTIVEINTELLECT

����*

RAMIFY

����⇡

DESCRIBE - SYNTHESISE - report

HHHHj

goal-datum pair
HHHj



9

The goal-datum pair consists of a goal (the conclusion)
and a datum (parts of a supposed proof).

The module DESCRIBE identifies a hole in the proof, and
describes the lefthand and righthand edges of the hole.
(Ibn Sı̄nā remarks that a more complicated procedure,
to be described in his Appendices, can handle proofs with
more than one hole.)

The module SYNTHESISE shrinks down the proof to left
and right of the hole, starting at the left (Arabic right) and
working towards the right (Arabic left).
It reports failure if it finds a logical error.

10

The module RAMIFY lists the finitely many single
sentences that could close the gap, and creates new
goal-datum pairs by putting each of these in the gap.

The module SYNTHESISE (second appearance) uses the
shrinking technique to check the logical validity of each
filled-in proof. If none are valid, it reports failure.
Otherwise it outputs the valid proof with weakest fill �.

The module SELECT checks whether � is a known fact.
If yes, it reports success. If no, it removes the fill and
outputs the unfilled goal-datum pair.

11

The module ACTIVEINTELLECT suggests sentences that
will narrow the gap without closing it.

This step is not deterministic. Ibn Sı̄nā himself suggests
alcohol, prayer and sleep as useful aids.
It would be deterministic if we were reasoning from a
specified theory, as for example in PROLOG.

Finally ACTIVEINTELLECT passes back to DESCRIBE the
new goal-datum pairs got by adding in the suggested
sentences, and the cycle starts over again.

12

Ibn Sı̄nā never describes the algorithm explicitly.

Instead, in his Qiyās ix.6 he gives his students 64 exercises
with hints for the solutions.

He doesn’t say what the exercises are for,
but in fact virtually all of the algorithm can be extracted
from his hints for solution.



13

Samples:

[Problem 1.] Suppose the goal is universally quantified
affirmative, namely ‘Every C is an A’, and suppose that the found
premises are ‘Every C is a B’ and ‘Every D is an A’. Then if it’s clear
that ‘Every B is a D’, your syllogism is in good order; otherwise it
needs a middle.

[Problem 4, goal ‘No C is an A’.] Suppose the found [premises] are
‘No C is a B’ and ‘Every D is an A’. Then it can’t be used.

[Problem 37.] If the goal is universally quantified affirmative
[thus: ‘Every C is an A’]; and you have [the premises] ‘Every D

is a B’ and ‘Every B is an A’, and ‘Every C is a D’ is attached, this
makes [the syllogism] determinate.

Work through the remaining cases of this kind for yourself.

14

A precise description of the algorithm,
as an abstract state machine
(the format used by Börger and Rosenzweig),
takes four pages in

Wilfrid Hodges, ‘Ibn Sı̄nā on Analysis I: Proof Search’
in Fields of Logic and Computation; Essays dedicated to Yuri

Gurevich, edited by Blass et al., Springer Lecture Notes in
Computer Science 6300 (2010) 354–404.


