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Good thinking needs good representations.
(A fact noted by Archimedes in his Sand-Reckoner.)

• When the representations are public,
we can measure their efficiency.
I report some recent work relating representations in
logic to different thinking strategies.

• When the representations are internal, experimental
work is hard to tie up with introspective evidence. I
imagine Kurt Gödel—logic’s deepest introspecter—
commenting on some recent cognitive science.
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FIRST PART: PUBLIC REPRESENTATIONS

Hyperproof, by Jon Barwise and John Etchemendy

A proof calculus for first-order logic, using a computer.

Formulas can be represented by graphics using
objects on a squared board.

Proofs can be carried out either with formulas
or with the board.
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Hyperproof can be used in two ways:

(1) in graphic mode, i.e. with the graphics enabled;
(2) in syntactic mode, i.e. with only formulas
showing on the screen.

In syntactic mode, Hyperproof is a conventional
natural deduction proof system.

Students using Hyperproof at Stanford were examined at
the end of the course, using a computer in the exam.
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K. Stenning, R. Cox and J. Oberlander (1995):

Students at Stanford University (all high achievers) were
grouped semi-randomly into two groups, G and S.

Then the students took a one-quarter course in Hyperproof;
students in group G received the graphic mode,
S received the syntatic mode.
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All the students were tested before and after the course
with two types of question,
all written in English without symbols:

• Blocks-world: problems about arrangements of
pieces on a board.

• GRE analytical: problems for which a picture
might be helpful.

(Also on GRE logical tests, but we ignore these here.)

7

Findings:

(a) The students in both group G and group S significantly
improved their scores on the GRE analytical test.

(b) Students who started high on the GRE analytical test
improved their scores on Blocks-world if in group G;
if in group S their Blocks-world scores went down.

(c) Students who started low on the GRE analytical test
improved their scores on Blocks-world if in group S;
if in group G their Blocks-world scores went down.
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(d) During the course exam,
students in group G who started low on the GRE
analytical test moved into graphics mode and stayed
there;
students in group G who started high on the analytical
test moved often between graphics mode and
formula mode.

This research has been partly replicated at Göteborg
(Sweden),
and analysed further by Padraic Monaghan.
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SECOND PART: MENTAL REPRESENTATIONS

Deduction, by P. N. Johnson-Laird and Ruth Byrne (1991)

Johnson-Laird and Byrne (JL-B) contrast

using formal rules, which are sensitive only to the
syntactic form of expressions

with

a way to make deductions that depends, not on the
form of expressions, but on their meanings.

They illustrate the latter as follows.
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Problem: To make deductions from the following premises.

Arthur is in Edinburgh or Betty is in Dundee,
or both.

Betty is not in Dundee.
If Arthur is in Edinburgh, then Carol is in

Glasgow.

For short,

a or b, or both.
Not b.
If a then c.

(Their abbreviation, not mine.)
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STEP ONE. List ‘the set of possibilities’ as follows:

a b c

i. T T T

ii. T T F

iii. T F T

iv. T F F

v. F T T

vi. F T F

vii. F F T

viii. F F F
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STEP TWO.

• ‘a or b, or both’ rules out lines vii and viii.

• ‘Not b’ rules out lines i, ii, v and vi.

• ‘If a then c’ eliminates iv.

STEP THREE. Only iii remains,
and since iii makes c true we can conclude c:
Carol is in Glasgow.
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David Marr, Vision (1982), contrasts two levels of description
of a cognitive system:

• The computational theory describes what problems are
solved by the system, and the strategies involved.

• The representation and algorithm describes in formal terms
how the system derives its output from its input.

Johnson-Laird and Byrne claim that their notion of
‘model-theoretic reasoning’ (illustrated above) lies at the
algorithm level.
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An algorithm in Marr’s sense seems to be close to a formal
system as discussed by Gödel.

A formal system has a precisely defined finite vocabulary,
a recursive syntax, an explicit recursive set of axioms, and
a set of explicit computational rules for deriving
consequences from the axioms.

Thus Marr describes an algorithm for addition:
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. . . we might choose Arabic numerals for the
representation, and for the algorithm we could
follow the usual rules about adding the least
significant digits first and “carrying” if the sum
exceeds 9.

Gödel might comment that we can use Gödel numbering
to define a system in which the operation ‘add one’ is
definable, etc. etc.
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Gödel:

What is missing [from Principia] is a precise
statement of the syntax of the formalism. Syntactical
considerations are omitted even in cases where they
are necessary for the cogency of the proofs.

Marr:

. . . the important point is that if the notion of
different types of understanding is taken very
seriously, it allows the study of the
information-processing basis of perception to be
made rigorous [his italics].
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Kurt Gödel
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As JL-B imply, we can formulate
their deduction procedure above as an algorithm.
Hence we can formulate it as a formal system.

Gödel notes two ways of treating a formal system:

1. The symbols have meanings, and the system rules
describe operations justified by these meanings.

2. The symbols of the system have no ‘content’,
and we operate the system by using
‘considerations about finite combinations of symbols’.
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The JL-B description of their procedure leaves it open
whether they are describing 1 or 2.
But since they label the procedure as ‘model-theoretic’,
probably they mean to exclude 2.

Hence the symbols in their account have meanings,
and different meanings imply different representations of
the logical problem.

We examine some possible meanings.

We ask first what JL-B mean by a ‘possibility’.
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Answer One: A possibility is a statement.
E.g. line vii is the statement

Arthur is not in Edinburgh, Betty is not in Dundee
and Carol is in Glasgow.

Then Step Two contains the inference:

Arthur is in Edinburgh or Betty is in Dundee, or
both. Therefore it is not the case that: Arthur is not in
Edinburgh, Betty is not in Dundee and Carol is in
Glasgow.

Problem: We are not told how this inference is made.
If by another similar procedure, we have a regress.
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Answer Two: A possibility is a way things might be.

Problem: This is a higher-level concept. To reason with it,
we need further concepts, e.g. ‘possible relative to given
information’.

Gödel proved in 1936 that passing to higher-level concepts
allows proofs to be speeded up, sometimes dramatically.

But to exploit this extra power would imply a boosting of
the formal system.
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Example (George Boolos)

∀n F (n, 1) = S(1).

∀x F (1, S(x)) = S(S(F (1, x))).

∀n∀x F (S(n), S(x)) = F (n, F (S(n), x)).

D(1).

∀x (D(x) → D(S(x))).

� D(F (S(S(S(S(1)))), S(S(S(S(1)))))).
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Boolos gives a one-page proof in second order logic.
(One can make it a set-theoretic proof that uses induction.)

He also shows that
any proof in any standard proof calculus
would be of astronomical length.
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Answer Three: A possibility is a function assigning
one of True, False to each of the sentences a, b, c.

(This would be genuinely ‘model-theoretic’.)

Problem: What is meant by ‘ruling out’ or ‘eliminating’
a possibility?

Reasonable explanations fall back on Answer One.

25

Closing remarks

Much of Gödel’s introspection was about how we know
mathematical facts. It’s implicit in his approach that our
thinking gives us not just conclusions, but evidence for those
conclusions.

I hope that cognitive scientists will allow this notion.
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Example Frege claims that the axioms of his Begriffsschrift
(concept-script) need no further justification once the
concepts have been explained.

One axiom is

� (c → (b → a)) → ((c → b) → (c → a)).

Don’t we in fact justify this, to ourselves and others, by a
truth table calculation?
So the justification introduces other concepts, close to those
we saw in JL-B.

There is surely a cognitive question here?
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