Corrigenda for Mathematical Logic, Chiswell and Hodges

- p.20: Ex. 2.4.1(c): b (not a) unequal to 0 .
- p.22: last displayed item, top right: should be D, not D^{\prime}.
- p.23: Exercise 2.5.1(d) should read

$$
\vdash(((\phi \longleftrightarrow \psi) \longleftrightarrow \chi) \longrightarrow(\phi \longrightarrow(\psi \longleftrightarrow \chi)))
$$

It is not possible to do the exercise as given in the book using only the rules developed so far. For if it were, one could give a proof that

$$
\vdash((\phi \longleftrightarrow(\psi \longleftrightarrow \chi)) \longrightarrow((\phi \longleftrightarrow \psi) \longrightarrow \chi))
$$

and so a proof that

$$
\{(\phi \longleftrightarrow(\psi \longleftrightarrow \chi)),(\phi \longleftrightarrow \psi)\} \vdash \chi
$$

using just these rules. The method of Exercise 3.9.2 shows that this can't be done, as follows. Add to that exercise that the value of $(p \wedge q)$ is the minimum of the values of p and of q, and the value of $(p \longleftrightarrow q)$ is the same as that of $((p \longrightarrow q) \wedge(q \longrightarrow p))$. Then show that the conclusion of Exercise 3.9.2(c) remains true when the rules $(\wedge \mathrm{I}),(\wedge \mathrm{E}),(\longleftrightarrow \mathrm{I})$ and $(\longleftrightarrow \mathrm{E})$ can also be used in D.

Therefore, it suffices to find values for ϕ, ψ, χ such that $(\phi \longleftrightarrow \psi)$ and $(\phi \longleftrightarrow(\psi \longleftrightarrow$ $\chi)$) both have value 1 but χ has value less than 1 . The following values work: ϕ and ψ have value $0, \chi$ has value $1 / 2$.

- p.44: exercise 3.2.6, should be "if $D_{1}(\mu)=\left(v_{1}, \ldots, v_{n}\right)$ then $D_{2}(f \mu)=\left(f v_{1}, \ldots, f v_{n}\right)$."
- p.47: the penultimate sentence of Theorem 3.3.4 should read "Moreover in case (b) the formulas ϕ and ψ are uniquely determined segments of χ ".
- p.54: in Definition 3.4.1(f), third line from bottom, "leaf" should be "node".
- p.62: in Definition 3.5.1, Line 3, "identity" should be "identify".
- p.72: Definition 3.7.1 should read "to each $q_{i}(1 \leq i \leq k)$..".
- p.74: the last line should end "both $A^{\star}(\phi[S])$ and $A[S]^{\star}(\phi)$ are F."
- p.75: Theorem 3.7.6(b) should be labelled "Replacement Theorem".
- p.78: the expression (3.59) should be $\left.\left(\cdots\left(\phi_{1} \wedge \phi_{2}\right) \wedge \cdots\right) \wedge \phi_{n}\right)$.
- p.79: part (b) of Definition 3.8.1 should read "... these n formulas are called the disjuncts of the disjunction."
- p.84: at the end of exercise 3.8.2(a), it should be "...logically equivalent to ϕ.]".
- p.95: Exercise 3.10 .1 should begin "If we kept the truth function symbols \longrightarrow, \vee and \longleftrightarrow ".
- p.115: Definition 5.3.6 should include the condition that, if a leaf is labelled by a term, then it has a mother. Equivalently, if a parsing tree has just a single node, then its label must be \perp.
- p.119: Definition 5.3.9, part (a), the complexity of a formula is the height of the parsing tree with leaves labelled by terms, and the corresponding edges, removed. This truncated parsing tree should also be used in part (c).
- p.144: parts (1) and (2) of Theorem 5.8.3 are referred to as (a) and (b) in the proof.
- p.146: in Definition 5.8.4, it should be $\left(k_{1}, \ldots, k_{n}\right)$, not $\left(k_{1}, \ldots, k_{m}\right)$.
- p.190: Definition 7.6.3, third line, $R L(\sigma)$ should be $\operatorname{LR}(\sigma)$.
- p.193: in the last sentence of the proof of the Compactness Theorem, it should be $\Gamma^{\prime} \models \perp$, not $\Gamma \models \perp$.
- p. 202: proof of Theorem 7.8.3(a), third line, should be "Hence X is countable by Lemma 7.8.2."
- p.240: the definitions of t^{\prime} and ϕ^{\prime} in the solution of 5.4.8 should be as follows.

$$
t^{\prime}= \begin{cases}t & \text { if } t \text { is a variable or a constant symbol in } \rho \\ x_{0} & \text { if } t \text { is a constant symbol not in } \rho \\ F\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) & \text { if } t \text { is } F\left(s_{1}, \ldots, s_{n}\right) \text { for some terms } s_{1}, \ldots, s_{n} \text { and } F \text { in } \rho \\ x_{0} & \text { if } t \text { is } F\left(s_{1}, \ldots, s_{n}\right) \text { for some terms } s_{1}, \ldots, s_{n} \text { and } F \text { not in } \rho\end{cases}
$$

The definition of ϕ^{\prime} needs modification only in the case that ϕ has the form $R\left(t_{1}, \ldots, t_{n}\right)$, where R is a relation symbol in σ.

$$
\phi^{\prime}= \begin{cases}R\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right) & \text { if } \phi \text { is } R\left(t_{1}, \ldots, t_{n}\right) \text { and } R \text { is in } \rho \\ \perp & \text { if } \phi \text { is } R\left(t_{1}, \ldots, t_{n}\right) \text { and } R \text { is not in } \rho \\ \left(s^{\prime}=t^{\prime}\right) & \text { if } \phi \text { is }(s=t) \\ \perp & \text { if } \phi \text { is } \perp \\ \left(\psi^{\prime} \square \chi^{\prime}\right) & \text { if } \phi \text { is }(\psi \square \chi) \text { with } \square \in\{\wedge, \vee, \rightarrow, \leftrightarrow\} \\ \left(\neg \psi^{\prime}\right) & \text { if } \phi \text { is }(\neg \psi) .\end{cases}
$$

Author: Ian Chiswell

