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1 Maria Panteki as I remember her 
 
Maria Panteki came to Bedford College, University of London in around 1980 to take 
an MSc in Mathematics.  I was on the Mathematics staff at Bedford from 1968 to 
1984.  In that year the college was closed down, and the assets and records of its 
Mathematics department were scattered around London University.  Last year I was 
involved in an unsuccessful attempt to track some of them down.  So I think it would 
be hopeless to try to dig out the official records on Maria, and I have to rely on 
memory.   
 She was a lively member of my Universal Algebra class.  I'm told she had 
attended my Logic class before that, but it was a large class and I confess I don't 
remember.  She was a close friend of my PhD student Cornelia Kalfa, and the two 
later became colleagues on the staff of the Aristotle University of Thessaloniki.  To 
me as a logician it has been a particular point of pride that two logicians at the 
Aristotle University were students of mine. 
 She moved on from Bedford College to work with Ivor Grattan-Guinness on a 
group of mid nineteenth-century British mathematicians, some but not all of whom 
were also logicians.  Her work in this field has become well known and justly praised 
for its scholarship and its penetration.  She was an eager correspondent, and over the 
years she kept in touch with me at the logical end of this work.  The flow of 
information was almost entirely from her to me.  She explained to me the 
environment in which William Hamilton (of Edinburgh), Augustus De Morgan and 
George Boole worked.  I learned about George Peacock, Duncan Gregory and 
Thomas Solly from her.  Occasionally I could fill a small gap in her knowledge — I 
recall that she sent me an encyclopedia entry by one HWBJ whom she couldn't 
identify, and I gave her H. W. B. Joseph 1867-1943 (remembering that when I was a 
boy I was introduced to an old lady who I was told was Joseph's younger sister).   
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 Her untimely death is a personal loss to many of us, and a real sadness for the 
history of mathematics.  She would certainly have been delighted at the thoughtful 
conference on 'History of Modern Algebra: 19th century and later' which her 
colleagues at Thessaloniki dedicated to her memory. I add my own thanks to them for 
their warm hospitality.   
 
 
2 History and mathematics 
 
Maria and I didn't always agree in our assessments.  In one of our discussions in 
1999, she seemed puzzled by the link I drew between Peacock and Boole — more on 
this later.  She wrote to me: 
 

(1) 
Since you mention Boole, I found not a single  reference of his to 
Peacock, and I was greatly surprised.  There was definitely a line 
of influence from P's symbolic algebra to B's algebraic logic, but 
as noted in my paper this line concerned mainly the elaboration 
of P's ideas by D. F. Gregory.  ... Of course you have a specific 
prism to see their writings, that of model theory, a modern 
approach, whereas my own tends to be deeply historical, 
checking rather the background of these notions than their fruit. 

 
(In passing I note the graceful syntax of Maria's last sentence above, which is more 
19th than 20th century English.  Clearly she absorbed more than mathematics from 
the sources that she studied!) 
 Maria is absolutely right to point to a difference between her approach as a 
historian of mathematics and mine as a mathematician interested in history.  But I 
would phrase it a little differently.  The difference between 'background' and 'fruit' — 
to use her words — seems to me the difference between tracing influences backwards 
in time and tracing them forwards.  Both are difficult tasks that mathematicians like 
me should leave to the historians; my expertise in model theory gives me no specialist 
tools for either of these tasks.   
 But for me there is an important third task.  The nineteenth century documents 
have to be measured not only against their context in history, but also against their 
context in the mathematical facts.  The only reservation I would put on this is that if 
we read mathematical documents of an earlier age in the light of our own 
mathematics, we can easily misidentify the mathematical facts that the earlier 
documents are discussing.  And here is the task:  to identify what piece of 
mathematics a particular historical mathematician is discussing.  For this you have to 
be a mathematician — otherwise you can hardly do more than describe the words and 
symbols, and this is not at all the same as locating the mathematical content.  And of 
course you have to be a historian too — otherwise you can only describe how far the 
historical figure succeeded in grasping the mathematics that you know yourself.   
 In a paper for a recent conference on understanding traditional Indian logic, I 
illustrated this point by reconstructing some unpublished work of Lindenbaum and 
Tarski from the 1920s, [6].  Below I will document it with another example, this time 
taken from George Boole.   
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3 Boole's rule 
 
Huge changes came over logic during the period 1830-1930 (taking rough dates).  A 
question that has often worried me is to describe correctly the main differences 
between the earlier logic and the later. Popular accounts of the difference are often 
still based on the propaganda of the winning side in the battle between the old and the 
new, and this is never a good basis for reaching the truth.   
 George Boole introduced a certain rule in his Mathematical Analysis of Logic 
of 1847, [1].  The rule is strikingly different from the normal rules of traditional logic, 
but in modern logic it would hardly raise an eyebrow.  So it serves as one criterion of 
the difference between the old logic and the new.  For the remainder of this paper I 
will try to identify just what the rule was.  This involves stating both its mathematical 
content and the justification that Boole thought he had for using it.   
 I ignore completely the question of its 'fruit' — I don't know the evidence that 
anybody else ever read this part of Boole's work, and I confess I haven't pursued the 
question.  But we will need to look at the 'background', because it forms part of the 
evidence for Boole's intentions.  Putting oneself into the mind of someone from a 
different culture is always hard, and everything I say is provisional.  If I had a quarter 
of Maria's knowledge of the period, I'm sure I would have said some things 
differently. 
 Boole doesn't state the rule explicitly, but he calls attention to a particular case 
of it on page 67 of [1]: 
 

(2) 
Let us represent the equation of the given Proposition under its 
most general form, 
 

a1t1 + a2t2 ... + artr = 0 
 
...  Now the most general transformation of this equation is 
 

ψ(a1t1 + a2t2 ... + artr) = ψ(0), 
 
provided that we attribute to ψ a perfectly arbitrary character, 
allowing it even to involve new elective symbols, having any 
proposed relation to the original ones.  (Boole's italics.) 

 
The 'transformation' that Boole is invoking here is as follows: 
 

(3) 
Let ψ(x) be a boolean function of one variable, and let s and t be 
boolean terms.  Then from s = t we can derive ψ(s) = ψ(t).  

 
I will call this Boole's rule.  Where we say 'boolean function' he speaks of 'elective 
symbols'; this is an important difference but I think it is irrelevant to our discussion.  
Also 'derive' just means we perform the transformation; without further investigation 
we can't assume that Boole intends the rule as a rule of derivation in the sense of 
modern logic, though he clearly intends something along those lines. 
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 I divide my comments on the rule into two parts.  The first part is about the 
rule itself with no particular reference to Boole.  The second is about how Boole 
himself intended it. 
 
 
4 Boole's rule in itself 
 
There are three things to be said here.  (1) The rule is syntactically 'deep'.  (2) Nothing 
like it appears in traditional logic before Boole.  (3) All modern systems of predicate 
logic use either it or some related deep rule. 
 
 
 4.1 The rule is deep 
 
 Consider the case where Boole's term ψ(x) has the form fghjk(x), and where f, 
g etc. are elective symbols (or more generally 1-ary function symbols).  Boole thinks 
of the term as built up by applying f to ghjk(x), which in turn is got by applying g to 
hjk(x) and so on.  (His symbols 'operate upon' what follows them;  [1] p. 15ff.)  So 
parsing ψ(x) gives a tree: 
 
   ψ(x) = f(          ) 
    g(        ) 
     h(      ) 
      j(    ) 
       k(   ) 
        x 
 
Then ψ(s) and ψ(t) have the same parsing, except that at the bottom they have 
respectively s and t in place of x.  (The terms s and t might themselves be complex, so 
that the parsing of ψ(s) and ψ(t) could be continued downwards.)  So the application 
of Boole's rule in this case involves making changes at the sixth level from the top.  
For every natural number n we can construct an example where the application of 
Boole's rule involves unpacking an expression down to n levels.  This is what is 
meant by saying that Boole's rule is 'deep'. 
 Boole himself says in (2) above that ψ in his rule has a 'perfectly arbitrary 
character' and may involve new elective symbols.  But at his date no logicians 
distinguished systematically between written expressions and what they stand for, so 
that the notion of parsing had no real purchase.  This situation changed only in the 
1920s, thanks to work of Post, Leśniewski, Tarski and others. 
 
 
 4.2 Traditional logic has no deep rules 
 
 The inference and transformation rules found in traditional aristotelian logic 
are never deep.  Usually they assume that a sentence has one of the four forms 
 

Every A is a B. 
No A is a B. 

Some A is a B. 



5 

Some A is not a B. 
 
In any reasonable way of parsing these sentences, A and B will be near the top of the 
analysis.  Some traditional logicians emphasise the fact that the rules of logic don't 
reach down inside the expressions put for A and B.  One does meet some more 
complicated sentence forms, for example 
 

If p then q. 
Necessarily every A is a B. 

Every A, insofar as it is an A, is a B. 
 
But none of these require a rule that reaches down to an arbitrarily deep level inside 
expressions. 
 There is really only one qualification that we need to make to this broad 
claim.  Namely, traditional logicians accepted that in order to apply the rules of logic 
to a sentence, we often have to paraphrase the sentence first.  So a sentence could in 
theory mean the same as 'Every A is a B', but have the A buried several levels down 
inside some contorted phrasing.  But in practice we don't meet arbitrarily complex 
examples.  Also — and this is an important point — traditional logicians rarely give 
us rules for paraphrasing.  In the few cases where they do, the rules don't go deep into 
the syntax. 
 There are examples and references for all this in my paper [5].  In that paper I 
use 'top-level processing' as a name for the traditional belief — sometimes explicit 
and often implicit — that rules of logic have to apply to the top syntactic level of the 
expressions involved.  Let me take up one of the examples described in that paper; it 
shows one of the most powerful and clear-headed attempts by a traditional logician to 
get around the restrictions imposed by top-level processing. 
 The example comes from Leibniz in the late 17th century.  He wanted to 
justify the inference 
 

(4) 
Painting is an art.  Therefore a person who studies painting 
studies an art. 

 
The problem is that in the second sentence, 'painting' has dropped to the position of 
object in a subordinate clause.  Leibniz thought that the core issue was that in object 
position 'painting' is in an oblique case, i.e. not in the nominative case, either in Latin 
or in German.  (This point is invisible in English.) 
 Leibniz understood that by quantifier rules (which happen not to be deep in 
our sense), it suffices to show: 
 

(5) 
All painting is an art.  Titius studies some painting.  Therefore 
Titius studies some art. 

 
This brings 'painting' up into the main clause, but it is still not in the nominative case.  
Here is the paraphrase that Leibniz uses to solve the problem: 
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(6) 
All painting is an art.  Some painting is a thing that Titius 
studies.  Therefore some art is a thing that Titius studies. 

 
The step of paraphrasing rests on what Leibniz sometimes calls 'linguistic analysis', 
and not on syllogistic logic ([7] p. 479f): 
 

(7) 
It should also be realized that there are valid non-syllogistic 
inferences which cannot be rigorously demonstrated in any 
syllogism unless the terms are changed a little, and this altering 
of the terms is the non-syllogistic inference.  There are several of 
these, including arguments from the nominative to the oblique ...  
(Lebinz's emphasis) 

 
Leibniz never offers rules for carrying out this kind of paraphrase.  If he had done, I 
very much doubt they would have been deep.   
 Here is one reason why they would probably not have been deep.  Leibniz is 
hoping to use paraphrase so as to extend the scope of a particular syllogistic rule,  
 

Given α ➝ β and φ(α), if α is positive in φ(α), then infer φ(β).  
 
('Positive' appears as 'affirmative' in Leibniz's discussion.)  If he had a deep 
paraphrasing rule to generalise the example above, he would have needed a method 
for recognising when an expression arbitrarily deep in the structure of a sentence is 
occurring positively.  Maybe new discoveries will refute me, but I don't believe any 
general method for this was even considered before the twentieth century.  (Special 
cases are mentioned by John of Salisbury in the twelfth century and Frege in the 
nineteenth.) 
 We will see below that Boole himself didn't regard his rule as beloning to 
traditional logic. 
 
 
 4.3 Boole's rule in modern calculi 
 
 Frege in his Begriffsschrift of 1879 ([4] §20, p. 50) gets the effect of Boole's 
rule by using modus ponens together with the axiom schema 
 

(8)               
c = d ➝ (φ(c) ➝ φ(d)) 

 
(our notation) where φ is a formula of any complexity.  We can derive Boole's rule 
from (8) by considering the case  
 

s = t ➝ ((ψ(s) = ψ(s)) ➝ (ψ(s) = ψ(t))) 
 
and applying the axiom ψ(s) = ψ(s) ([4] §21, p. 50) and propositional rules. 
 Not all modern calculi consider equality as a logical notion.  For example 
Prawitz's Natural Deduction has no rules or logical axioms for equality.  But Prawitz 
still has deep rules for the quantifiers, for example his rule ∀I) ([12] p. 20): 
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A 

 
∀x Aa

x 
 
where the variable x can be buried arbitrarily far down in the formula A.   
 As far as I know, every general purpose calculus proposed for first-order 
predicate calculus has used deep rules for quantifiers.  This is true even for the 
resolution calculus, where all the sentences have the form ∀x1 ... ∀xnθ with θ 
quantifier-free.  The reason is that in order to bring arbitrary sentences to this form we 
need to introduce Skolem functions, and so the variables may occur inside arbitrarily 
complex Skolem terms. 
 There are logical calculi that have Boole's rule only in a shallow form, and use 
the quantifier rules to take up the slack.  One example is the logical calculus in 
Shoenfield's Mathematical Logic [13] p. 21.   
 Could there be a sound and complete proof calculus for predicate logic which 
has no deep rules?  Curiously the answer is yes, but only in a roundabout way and by 
introducing extra symbols.  For example to handle the application of Boole's rule to 
the term fghjk(x), we could introduce new function symbols m, n, o, p and axioms 
 

m(x) = j(k(x)),   n(x) = h(m(x)),   o(x) = g(n(x)),   p(x) = f(o(x)). 
 
Then the application of Boole's rule is equivalent to deducing p(s) = p(t) from s = t, 
and this uses only top-level substitutions.  Skolem showed that we can break down 
arbitrarily complex formulas in a similar way by adding new relation symbols.  With 
his added symbols only shallow quantifier rules are needed. 
 In a way this is cheating.  We eliminate deep rules, but only at the cost of 
changing the language.  But the point is interesting, because this introduction of new 
symbols corresponds to part of what traditional logic handled by paraphrasing.  (But 
only part of it.  In [5] I gave several examples of traditional paraphrases that alter the 
domain.) 
 There is no evidence that Boole himself had any conception of a kind of logic 
that needs deep rules.  He says that the 'purport' of his discussion of his rule 'will be 
more apparent to the mathematician than to the logician' ([1] p. 69).  This is a good 
moment for us to go back to Boole and ask what he thought he was doing with his 
rule. 
 
 
5 Boole's own understanding of his rule 
 
We start with two negative points.  Boole didn't regard his rule as justified either by 
'common reason' or by the definitions of the expressions involved. 
 
 
 5.1 Not a rule of 'common reason' 
 
 At the end of his Preface Boole says ([1] p. 2): 
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(9) 
In one respect, the science of Logic differs from all others; the 
perfection of its method is chiefly valuable as an evidence of the 
speculative truth of its principles.  To supersede the employment 
of common reason, or to subject it to the rigour of technical 
forms, would be the last desire of one who knows the value of ... 
intellectual toil ... 

 
With very few exceptions, traditional aristotelian logic had no metatheorems.  
Logicians deduced results by chains of reasoning where every step was obvious to 
'common reason'.  The very few metatheorems that one does find in traditional logic 
(like the peiorem rule of Theophrastus or the Laws of Distribution) are essentially 
summaries of families of facts that we can check directly.  Aristotelian logicians saw 
themselves as codifying our inbuilt rules of reasoning, not finding new ways of 
reasoning to the same conclusions.   
 Boole's remark about the purport of his rule being more apparent to 
mathematicians than to logicians should be read in this context.  Apparently he 
thought of his rule as a mathematical 'technical form', not an instance of common 
reason.  We can see this from the fact that he felt a need to justify its use 
mathematically.  He says ([1] p. 69): 
 

(10) 
The purport of the last investigation will be more apparent to the 
mathematician than to the logician.  As from any mathematical 
equation an infinite number of others may be deduced, it seemed 
to be necessary to shew that when the original equation expresses 
a logical Proposition, every member of the derived series, even 
when obtained by expansion under a functional sign, admits of 
exact and consistent interpretation.  

 
There is more to unpick here than I can handle in this short essay.  But if we look at 
the context, it is clear that he is saying that his mathematical discussion on p. 68 
shows that certain consequences of Boole's rule 'admit of exact and consistent 
interpretation'.  So in some sense he is justifying the rule.  The discussion on p. 68 
uses a metatheorem that he derived on p. 60f by means of a highly speculative 
application of Maclaurin's theorem.  The general form of his argument on p. 68 is:  
Boole's rule applied to equations E gives equations F.  If we paraphrase the equations 
F by means of Maclaurin's theorem, we can see that what they say is a special case of 
what the equations E said.  So all's well with the world.   
 If this is how he proposes to justify his rule, then he clearly doesn't regard the 
rule as belonging to 'common reason'.  This is interesting because of the contrast with 
Frege's view in the Begriffsschrift.  Frege certainly accepted the traditional 
aristotelian view that we mentioned after quotation (9) above.  In his view, logic starts 
with self-evident truths and deduces from them other truths by means of deduction 
rules that are self-evidently correct (where 'correct' means that they never lead from 
truth to falsehood).  And we saw earlier that Boole's rule is virtually one of Frege's 
logical axiom schemas.  So Frege would surely have regarded Boole's rule as self-
evidently true.  
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 My personal sympathies are entirely with Frege on this one.  I have been 
trying — without any success so far — to interest some cognitive scientists in the 
question, since I regard self-evidence as a cognitive notion.  (Not everyone does.)  
 
 
 5.2 Not based on definition 
 
 Today we might well justify Boole's rule by stating the necessary and 
sufficient conditions for an equation to be true, and then showing (probably by 
induction on the complexity of ψ) that the rule applied to a true equation always 
yields a true equation.  I failed to find in Boole any hint of a justification along these 
lines.   
 A look at Boole's historical context may throw some light on this.  The next 
subsection will give some of the evidence for Boole's debt to George Peacock on 
questions of foundations.  So it was interesting to see how unclear Peacock is about 
equations.  On p. 8f of the 1830 edition of his Treatise on Algebra [8] he says: 
 

(11) 
The sign =, placed between two quantities or expressions, 
indicates that they are equal or equivalent to each other: it may 
indicate the identity or absolute equality of the quantities 
between which it is placed:  or it may shew that one quantity is 
equivalent to the other, that is, if they are both of them employed 
in the same algebraic operation, they will produce the same 
result:  or it may simply mean, as is not uncommonly the case, 
that one quantity is the result of an operation, which in the other 
is indicated and not performed. 

 
Here he distinguishes three notions:  (1) 'a = b' means that the quantity a is 'identical' 
with the quantity b, (2) 'a = b' means that if F is any algebraic operation then F(a) is 
'the same' as F(b), (3) 'a = b' means that b is the result of performing the operation 
indicated by a.  This is chaotic.  For example, what is the difference between 'equal', 
'identical' and 'the same'?  How are we to tell whether '2 + 2 = 4' means that 2 + 2 is 
identical with 4, or that the result of adding 2 to 2 is 4?  The chaos continues into 
Peacock's second edition twelve years later ([10] p. 4): 
 

(12) 
= [denotes] equality, or the result of any operation or operations. 
... The sum of 271, 164, and 1023, or the result of the addition of 
these numbers to each other, is equal to 1458. 

 
Here 'the result of the addition' and 'is equal to' appear in the same clause, conflating 
two of his previous notions.  (I warmly thank Marie-José Durand-Richard for helping 
me with these references, though she may not agree with the conclusion I draw from 
them.) 
 Note also Peacock [10] p. 198:  Given 
 

a1A1 = α1A2,   a2A2 = α2A3,  ...  an-1An-1 = αnAn 
 
he finds the value x of anA1/An as   
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x  =  (α1α2 ... αn / a1a2 ... an-1) 

 
Remarkably, his proof removes the = altogether and uses the theory of proportions. 
 In short it seems that Peacock had several notions of what an equation is, none 
of them very precise, and he saw no need to clarify the relations between these 
notions.  My guess is that he could get away with this because he thought of the 
mathematical content as living in the terms and their interpretation; the equation sign, 
where it wasn't just part of an algorithm, was a device that was useful for commenting 
on the mathematics, but wasn't strictly part of the mathematics.  But here I am 
speculating.  The non-speculative point is that Peacock is evidence for a mathematical 
environment in which it would have seemed quite unnatural to justify Boole's rule by 
reference to the definition of 'equation'. 
 
 
 5.3 Based on absence of contradiction 
 
 Boole's remark (10) about 'consistent interpretation' was not meant lightly.  
Already on page 4 of [1] he had said 
 

(13) 
We might justly assign it as the definitive character of a true 
Calculus, that it is a method resting upon the employment of 
Symbols, whose laws of combination are known and general, and 
whose results admit of a consistent interpretation. 

 
So there is good reason to hope that his notion of 'consistent interpretation' will throw 
light on his view of Boole's rule. 
 The notion of 'consistent interpretation' comes from Peacock.  In Peacock it 
means something fairly precise:  a 'consistent interpretation' of + and – is one that (i) 
applies to a class C of quantities that contains the natural numbers, and agrees with 
the interpretation of these symbols on the natural numbers, and (ii) makes true in C 
the basic identities of algebra that were true in the natural numbers.  For example 
when + and – are given their usual interpretations on the integers, the distributive law 
and the identity x – x = 0 (both of which were true on the natural numbers) remain 
true even when the variables are interpreted as standing for integers, possibly 
negative.  This seems to be the meaning of 'consistent interpretation' at [8] p. xxvii, 
[9] p. 226, [10] p. vii and [11] footnote p. 10.  De Morgan picked up the phrase; at [3] 
p. 208 he says 'I believe that symbolic algebra will never cease to dictate results 
which must be capable of consistent interpretation'.  Andrew Bell used it in his 
Elements of Algebra from 1839. 
 Boole was certainly happy to ally himself with Peacock's symbolical algebra. 
The opening words of his [1] (p. 3) are: 
 

(14) 
They who are acquainted with the present state of the theory of 
Symbolical Algebra, are aware, that the validity of the processes 
of analysis does not depend upon the interpretation of the 
symbols which are employed, but solely upon the laws of their 
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combination.  Every system of interpretation which does not 
affect the truth of the relations supposed, is equally admissible ... 

 
We saw in (1) that Maria would prefer to say that Boole's debt was to Duncan 
Gregory rather than to Peacock.  Boole studied with Gregory, and very likely he 
learned Peacock's work through Gregory.  But I know of nothing in Boole's use of 
symbolical algebra that he could have got from Gregory better than from Peacock.  
 To return to Boole's use of 'consistent interpretation':  Boole can't mean 
exactly the same by it as Peacock did.  In both the passages (10) and (13) he is talking 
about the 'consistent interpretation' of derived results in a calculus, and this would 
make no sense in Peacock's usage (at least as I read Peacock).  But the context allows 
us to read Boole as meaning something similar to Peacock but a little looser.  Boole 
means not just that the usual identities come out true ((ii) above), but also that when 
standard mathematical transformations are applied, the results never contradict each 
other.  This is what he was showing on his page 68.  There he showed that some 
results of applying Boole's rule and some results of applying Maclaurin's theorem are 
consistent with each other, when they are read in terms of Boole's logical 
interpretation of the elective symbols.   
 I believe Boole's view is as follows.  We reason in certain ways.  These ways 
can lead us to contradict ourselves.  But ([2] p. 160): 
 

(15) 
we are nevertheless so formed that we can, by due care and 
attention, perceive when [logical consistency] is violated, and 
when it is regarded. 

 
Thus we have it in our power to avoid contradictions; and this is our best guarantee of 
the 'truth' of a calculus.  I think this is exactly what Boole is saying at the quotation 
(13).   
 Thus:  neither Boole's rule nor Maclaurin's theorem is an example of 'common 
reason'.  But both of them come naturally to any trained mathematician, because they 
are used all over the place in analysis.  To justify their application to logic, the best 
test is that taken together, they never yield contradictory results.  Of course Boole's 
calculation on p. 68 doesn't prove that no contradictions arise.  But as with set theory 
today, the more we apply 'due care and attention' without finding any contradictions, 
the less likely it is that there are any.   
 In short, Boole adopted Boole's rule because it was used in analysis and it 
didn't give any trouble when it was transferred to logic.  The modern notion of a rule 
of deduction, which demonstrably never leads from truths to falsehoods, is nowhere 
to be seen. 
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