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1 Texts

1.1 Greek mathematics of Aristotle’s time

Hippocrates of Chios (3rd quarter of 5th c. BC), surviving in Simplicius’ (6th
c. AD) quotation of Aristotle’s pupil Eudemus. The translation is by Ivor
Bulmer-Thomas in the Loeb volume Greek Mathematical Works 1 (1939),
pp. 237-243.

I'shall set out what Eudemus wrote word for word, adding only for the
sake of clearness a few things taken from Euclid’s Elements on account of
the summary style of Eudemus, who set out his proofs in abridged form
in conformity with the ancient practice. ...

The quadratures of lunes, which seemed to belong to an uncommon
class of propositions by reason of the close relationship to the circle, were
first investigated by Hippocrates, and seemed to be set out in correct form;
therefore we shall deal with them at length and go through them. He
made his starting-point, and set out as the first of the theorems useful to
his purpose, that similar segments of circles have the same ratios as the
squares on their bases. And this he proved by showing that the squares
on the diameters have the same ratios as the circles.

Having first shown this he described in what way it was possible to
square a lune whose outer circumference was a semicircle. He did this
by circumscribing about a right-angled isosceles triangle a semicircle and
about the base a segment of a circle similar to those cut off by the sides.
Since the segment about the base is equal to the sum of those about the
sides, it follows that when the part of the triangle above the segment about
the base is added to both the lune will be equal to the triangle. Therefore
the lune, having been proved equal to the triangle, can be squared. In
this way, taking a semicircle as the outer circumference of the lune, Hip-
pocrates readily squared the lune. Next ...

If [the outer circumference] were less than a semicircle, Hippocrates
solved this also, using the following preliminary construction. Let there
be a circle with diameter AB and centre K. ...

Autolycus of Pitané (end of 4th c. BC), our earliest surviving Greek mathe-
matical text, though it seems to be exposition rather than original research.
My translation from the Budé text ed. Germaine Aujac, Autolycos de Pi-
tane: La sphéere en mouvement; levers et couchers héliaques, Les Belles
Lettres, Paris 2002, pp. 42—44.

If a sphere rotates evenly around its axis, all the points on the surface
of the sphere and not on the axis will draw circles which are parallel and
have the same poles on the sphere, and are orthogonal to the axis.

Let the sphere have axis the straight line AB with the points A and B
as the poles, and let it rotate evenly around its axis AB. Isay that all the
points on the surface of the sphere and not on the axis will draw circles
which are parallel and have the same poles on the sphere, and are orthog-
onal to the axis.

For let a point C' be taken on the sphere. And let a perpendicular line
CD be taken from C to the line AB. And let a plane be drawn through the
points A, B and the line CD; it will cut [the sphere] in a circle. Let AC'B be
the semicircle of this circle. If the semicircle AC'B is carried around, up to
its initial position, while holding the line AB fixed, the line C'D too will be
carried around with the movement of the semicircle AC' B while remaining
perpendicular to AB, and it will draw a circle in the sphere, with centre
the point D, and the radius is C'D which is perpendicular to the axis AB.



And it is clear that the points A, B will be poles of the drawn circle, since
AB is a perpendicular taken from the centre of the sphere and extended to
the surface of the sphere.

Likewise we will show that all the points on the surface of the sphere
which are not on the axis will draw circles that are orthogonal to the axis
AB with the same poles on the sphere. And circles around the same poles
on a sphere are parallel.

So all the points on the surface of the sphere and not on the axis will
draw circles that are parallel and have the same poles in the sphere, and
are orthogonal to the axis.

1.2 Galen on relational arguments

Galen, Institutio Logica xvi. My translation, but the state of the text is so
bad that any translation should be taken with a grain of salt.

(1) There is another third kind of syllogism useful for demonstrations,
which I describe as ‘relational’ — though the Aristotelians insist on count-
ing them among the predicative syllogisms. They are used not a little by
sceptics and theoretical and applied arithmeticians for arguments such as:
Theo owns twice as much as Dio. But Philo owns twice as much as Theo.
So Philo owns four times as much as Dio.

(5) As I said, there are a large number of syllogisms of this kind in
theoretical and practical arithmetic, which all have it in common that they
take their structure from some self-evident truths. Bearing these truths in
mind in the phrases as spoken, we will be able to reduce such syllogisms
to predicative ones, starting over again in a way that is clearer for us.

(6) Since it’s a self-evident universal axiom that ‘things equal to the
same thing are also equal to each other’, one can reason and demonstrate
just as Euclid in his first Theorem made a demonstration showing that the
sides of the triangle are equal. For since things equal to the same thing
are also equal to each other, and it is demonstrated that the first and the
second are equal to the third, the first will be equal to each of them.

(11) This syllogism is put in hypothetical form: ‘If Socrates is son of

Sophroniscus, then Sophroniscus is father of Socrates; but Socrates is son
of Sophroniscus; so Sophroniscus is father of Socrates.” In predicative
premises the construction of the calculation will be more forceful, of course
putting a universal sentence in front and hence some such axiom, ‘The per-
son that someone has as father, he is son of that person. Lamprocles has
Socrates as father; then Lamprocles is son of Socrates’.

1.3 Alexander on relational arguments

Alexander of Aphrodisias, commentary on Aristotle, Prior Analytics i.32;
trans. |. Mueller, Alexander of Aphrodisias, On Aristotle Prior Analytics
1.32—46, Duckworth, London 2006, p. 28.

Here he indicates clearly to us that one should not simply attend to
the conclusion and think that there is a syllogism if something follows
necessarily from what is assumed. For it is not the case that if a syllogism
proves something by necessity thereby also where something is proved
to follow by necessity from what is assumed, this is a syllogism, since
necessity is more inclusive than syllogism. Accordingly, if it is not the case
that if it follows by necessity from the assumption that A is equal to B and
C to B that A is also equal to C, that this is thereby a syllogism. There
will be a syllogistic inference if we assume in addition a universal premiss
which says that things equal to the same thing are also equal to each other
and we draw together what were taken as two premisses into one premiss
equivalent to the two. This premiss is ‘A and C are equal to the same thing
(since they are equal to B)". In this way it follows syllogistically that A and
C are equal to each other.

Similar to this is thinking that one proves syllogistically that A is greater
than C if one assumes that A is greater than B and B is greater than C, on
the grounds that this conclusion does follow necessarily. But this is not in
itself a syllogism unless the universal premiss ‘Everything which is greater
than what is greater than something is also greater than what is less than
that” is assumed in addition and the two things assumed are made into
one premiss — the minor in the syllogism — which says that A is greater
than B, which is greater than C. For in this way it will follow syllogistically
that A is also greater than C.



1.4 Sextus Empiricus on existential quantifier rules

Sextus Empiricus, Outlines of Pyrrhonismii.141, Loeb edition, trans. R. G. Bury

And of arguments which deduce something non-evident, some con-
duct us through the premisses to the conclusion by way of progression
only, others both by way of progression and by way of discovery as well.
By progression, for instance, are those which seem to depend on belief and
memory, such as the argument “If a god has said to you that this man will
be rich, this man will be rich; but this god (assume that I point to Zeus)
has said to you that this man will be rich; therefore he will be rich”; for we
assent to the conclusion not so much on account of the logical force of the
premisses as because of our belief in the statement of the god.

1.5 Contrasting notions of syllogism

Alexander of Aphrodisias, On Aristotle Prior Analytics 84, 12—16 (trans.
Barnes et al.)

This is an argument of the sort which the more recent thinkers call sub-
syllogistic; it takes something equivalent to the syllogistic premiss and de-
duces the same thing from it. (“Does not hold of some’ has been trans-
formed into ‘does not hold of every’, which is equivalent to it.) The more
recent thinkers deny that such arguments are syllogisms, since they look
to the words and the expression. Aristotle, however, looks to the mean-
ings (when the same things are meant) rather than to the words and says
that the same syllogism is deduced when the expression of the conclusion
is transformed in this way — granted that the conjunction is in general
syllogistic.

Al-Farabi, Book of the Syllogism 78A (my translation)

If a statement is not in the form of one of the [syllogistic moods] given
above, but can be brought to one of those forms by adding things or re-
moving things or rearranging the order, without affecting the original sense
of the statement, then this statement is a syllogism.

1.6 Ibn Sina on transitivity of equivalence

Ibn Sina Qiyas i.6 and his student Bahmanyar ibn al-Marzuban on transi-
tivity of equality. The translation of Ibn Sina is mine; that of Bahmanyar is
slightly adjusted from Khaled el-Rouayheb, Relational Syllogisms and the
History of Arabic Logic, 900—1900, Brill 2010, p. 24.

(Ibn Sina) Thus when you say
C'is equal to B and B is equal to D, so C'is equal to D. 1)

this is complete for you only when you become aware that C is equal to
something equal to D, and that a thing that is equal to something equal [to
XTis itself equal [to X].

(Bahmanyar) If you say ‘C'is equal to B and B is equal to D, therefore C'
is equal to D’ you have not made explicit one of the two premises. For the
form of the syllogism to be a complete syllogism we say ‘C' is something
thatis equal to B which is something that is equal to D, and anything equal
to something equal [to X] is equal [to X], and so C' is equal to D’. This is
as if someone said, ‘C' is equal to something equal to D, and everything
equal to something equal to D is equal to D, so C'is equal to D’.

{C = B} {B=D}
{C =B} and {B = D}
| @
{B} {has C' =itand is = D}

Q0]
Some {line} {has C =itand is = D}

| @
{C, D} is a {pair of lines with  Every {pair of lines with some line =-
some line =-between them} between them} is a {pair of = lines}

{C, D} is a {pair of = lines}
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C=D



Below is the previous diagram translated into first-order logic. Comparing
the two diagrams, we see that (3) identifies the subjectin z = 2z A z =
y as z, then (9) reidentifies the subject as (z,y), and finally (¢) removes
the identification of the subject in = y as (x,y). Instead of bringing
the subject out to subject position at the head of the formula, the second
diagram applies rules at whatever place in the formula is appropriate.

C=B B=D

— ()

(C=BAB=D)

—_—

(C=2zA2z=D) VaVy(Fz(z =zAz=y) »x =y) ©
C=D

1.7 Ibn Sina on compound syllogisms

From Ibn Sina Qiyas ix.3, on counting the size of a compound syllogism
(my translation).

In the case where the other [proximate premise] has to be derived [as
well], a syllogism with two premises is introduced in order to derive it.
Then at one level there are four premises and two conclusions, and at the
second level there are two premises and a single conclusion. So the com-
pound [syllogism] contains six premises altogether and three conclusions
altogether. The number of conclusions is half the number of premises.
Each of the [simple] syllogisms contains three terms and a conclusion.
Suppose in fact that each [proximate] premise [is proved by] a syllogism,
and the two [proximate] premises share a term. Then there are six terms,
except that one of them is shared in the middle, so there are five terms. The
shared term and the term at one end of the five give rise to one proximate
premise, and the shared term and the other end term give rise to the other
[proximate] premise. The two end terms of the five give rise to the goal
which is the target of the compound syllogism.

1.8 Ibn Sina on ordered pairs

Ibn Sina Qiyas ix.7 commenting on Prior Analytics .33, my translation.

It is said:
Zayd is Zayd the rich.

and

Zayd the rich won't survive till tomorrow unless [his] own-
ership of riches survives.

So the combination of the two meanings ([ZAYD] and [THE RICH]) won't
continue to be satisfied if one of the two meanings doesn’t continue to be
satisfied. In this example one has to understand that [ZAYD THE RICH]
is also a universal [i.e. a relation rather than a constant]. This is because
[ZAYD] describes only a single person, whereas the meaning [ZAYD THE
RICH] can be true of many different things. And this is because Zayd the
rich is a particular rich person with respect to a particular ownership of
riches. We could find him an hour later still being Zayd, but no longer rich,
so that he wouldn't still be Zayd the rich. And then [again] he could be-
come Zayd the rich. But we wouldn’t be referring [to the new ownership
of riches] as numerically the same as the previous ownership of riches; it
would be [a different exemplar] of the same species. So regarding him as
Zayd, he is that same individual. But regarding him as the combination of
Zayd and being rich, he is not numerically the same as the previous one.
He would only be the same as the previous one if it was the same Zayd
and numerically the same ownership of riches.

1.9 Ibn Sina on local validation

Ibn Sina Autobiography, trans. D. Gutas, Avicenna and the Aristotelian
Tradition, Brill, Leiden 1988, pp. 27f. Gutas’ ‘Ascertained’ is better trans-
lated ‘verified’, a near-synonym of ‘validated’. Also Gutas explains ‘con-
ditions’ (of the premises) as ‘modalities’; but in Ibn Sind’s normal usage
the word (Sart) means side-conditions, particularly ones that the speaker
intended but didn’t say.

8. The next year and a half I devoted myself entirely to reading Phi-
losophy: I read Logic and all the parts of philosophy once again. During
this time I did not sleep completely through a single night, or occupy my-
self with anything else by day. I compiled a set of files for myself, and for



each argument that I examined, I recorded the syllogistic premisses it con-
tained, the way in which they were composed, and the conclusions which
they might yield, and I would also take into account the conditions of its
premises until I had Ascertained that particular problem. ... So I contin-
ued until all the Philosophical Sciences became deeply rooted in me and I
understood them as much as is humanly possible. Everything that [ knew
at that time is just as I know it now; I have added nothing more to it to this
day.

9. Having mastered Logic, Physics and Mathematics, I ...

1.10 Frege on ‘the main argument’

Gottlob Frege, Begriffsschrift §9, trans. in van Heijenoort, From Frege to
Gddel pp 22f. Frege’s italics.

If in an expression, whose content need not be capable of becoming a judg-
ment, a simple or compound sign has one or more occurrences and if we regard
that sign as replaceable in all or some of these occurrences by something else (but
everywhere by the same thing), then we call the part that remains invariant in the
expression a function, and the replaceable part the argument of the function.

In the mind of the speaker the subject is ordinarily the main argument
(hauptsichliche Argument); the next in importance often appears as object.
Through the choice between [grammatical] forms, such as active—passive,
or between words, such as “heavier”—*“lighter” and “give”—"receive”,
ordinary language is free to allow this or that component of the sentence
to appear as main argument at will, a freedom that, however, is restricted
by the scarcity of words.

1.11 Peirce on cartesian powers

C. S. Peirce, Fragment on the Algebra of Logic, 1884 (Volume v page
109f in the Indiana edition). This unpublished fragment seems to mark the
moment when Peirce discovered first-order logic.

The first system of relationship which logic studies is that of an indefi-
nite collection of units. It may be represented by the schema

These constitute the universe of discourse. Various names or conventional
signs, for which letters may be used, are attached to these in various ways.
The study of this schema gives rise to the Boolian calculus. The logic of
relatives studies a collection of units arranged in an n-dimensional block,
thus:

Distinguishing the different dimensions by the letters i, j, k, etc. we may
write

ILa; for every i has the mark a.

¥ia; for some ¢ has the mark a.

ILII;¢  Every iis in the relation ¢ to every j.
¥;11;¢  Some i is in the relation ¢ to all j's.

The logic of relatives, so understood, coincides with Professor Mitchell’s
multidimensional logic; and the logic of relatives as De Morgan and I have
understood it, is a special case under this broader conception.

1.12 Peirce proving every inference is in Barbara

C. S. Peirce, Reasoning and the Logic of Things, Cambridge Lectures
1898, ed. K. E. Ketner, Harvard University Press, Cambridge Mass. 1992,
pp. 131f. This passage is analysed in Wilfrid Hodges, ‘The scope and
limits of logic’, in Dale Jacquette, Philosophy of Logic, Elsevier, Amsterdam
2007, pp. 44-46.

Suppose we draw a conclusion. Whether it be necessary or probable I
do not care. Let S is P represent this conclusion. Now we certainly never
can be warranted in drawing any conclusion about S from a premise, or
set of premises, which does not relate in any way to S. If the inference is
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drawn from more than one premise, let all the premises be colligated into
one copulative proposition. Then this single premise must relate to S; and
in that sense, it may be represented thus: S is M. I do not, of course, mean
that S need appear formally in this premise as a subject, far less as the sole
subject. I only mean that “S is M” may in a general sense stand for any
proposition which virtually relates to S. The inference, then, appears in
this form

Premise SisM
Conclusion SisP

But, whenever we draw a conclusion, we have an idea, more or less defi-
nite, that the inference we are drawing is only an example of a whole class
of possible inferences, in each of which from a premise more or less simi-
lar to the actual premise there would be a sound inference of a conclusion
analogous to the actual conclusion. And not only is this idea present to our
consciousness, — as is shown by our thinking that the premise leads to the
conclusion, — but, what is still more important, there is a principle actu-
ally operative in the depths of our minds, — a habit, natural or acquired, by
virtue of which we really should draw that analogous conclusion in each of
those possible cases. This operative principle I call, after the logician Fries,
the leading principle of the inference. But now logic supposes that reason-
ings are criticised; and as soon as the reasoner asks himself what warrant
he has for concluding from S is M that S is P, he is driven to formulate his
leading principle. Now in a very general sense we may write as represent-
ing that formulation, M is P. I write M is P instead of P is M because the
inference takes place from M to P, that is M is antecedent while P is conse-
quent. So that the reasoner in consequence of his self-criticism reforms his
argument and substitutes in place of his original inference, this complete
argument:

Mis P
SisM
Conclusion SisP

Premises {

I do not mean that the formulation of the leading principle necessarily
takes the form M is P in any narrow sense. I only mean that it must express
some general relation between M is P, which not merely in reference to the
special subject, S, but in all analogous cases will warrant the passage from
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a premise similar to S is M to a conclusion analogous to S is P.

It is thus proved that in an excessively general sense every complete ar-
gument, i.e. every argument having a leading principle of maximum ab-
stractness, is an argument in the form of Barbara.

2 Formal systems

2.1 The recombinant (igtirani) syllogistic moods

These are a generalisation of the predicative (= categorical) syllogistic moods
of Aristotle, probably due to Ibn Sina. Aristotle’s moods are listed on the
left, Ibn Sina’s additions on the right.

Ibn Sina follows the convention that in each proposition of a predica-
tive syllogism, when the first term C' is unsatisfied, then the proposition
counts as false if it is affirmative, and true if it is negative. He should
carry this convention over to the propositional moods on the right. But if
he does this, and takes all propositions to be talking about the present (or
about timeless truths), then the propositional moods collapse as shown in
the singular moods below (using the formulas in brackets).

First figure, Barbara

Every C'isa B. Whenever r, q.

Every B is an A. Whenever ¢, p.

Then every C'is an A. Then whenever r, p.
Celarent

Every C'isa B. Whenever r, g.

No Bisan A. Whenever ¢, notp.
Thenno C'isan A Then whenever r, not p.
Darii

Sometimes r and gq.
Whenever ¢, p.
Then sometimes r and p.

Some C'is a B.
Every Bisan A.
Then some C'is an A.
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Ferio

Some C'is a B.

No Bisan A.

Then every C'is an A.

Second figure, Cesare
Every C'isa B.

No Aisan B.

Then no C'is an A.

Camestres

No C'isa B.
Every Aisan B.
Then no C'is an A.

Festino
Some C'is a B.
No Aisan B.

Then not every C'is an A.

Baroco
Not every C'is B.
Every Aisan B.

Then not every C' is an A.

Third figure, Darapti
Every Bisa C.
Every Bisan A.
Then some C'is an A.

Felapton
Every Bisa C.
No Bisan A.

Then not every C' is an A.

Datisi

Some BisaC.
Every Bisan A.
Then some C'is an A.

Sometimes r and g.
Whenever ¢, not p.

Then not always when r, p.

Whenever r, q.
Whenever p, not q.
Then whenever r, not p.

Whenever r, not q.
Whenever g, p.
Then whenever r, not p.

Sometimes r and q.
Whenever p, not q.

Then not always when 7, p.

Not always when 7, q.
Whenever p, g.

Then not always when r, p.

Whenever g, r.
Whenever ¢, p.
Then sometimes r and p.

Whenever ¢, r.
Whenever ¢, not p.

Then not always when 7, p.

Sometimes ¢ and 7.
Whenever g, p.
Then sometimes r and p.
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Disamis

Every Bisa C.
Some B is an A.
Then some C'is an A.

Whenever ¢, r.
Sometimes ¢ and p.
Then sometimes r and p.

Bocardo

Every Bisa C.

Not every B is an A.
Then not every C is an A.

Whenever g, r.
Not always when ¢, p.
Then not always when r, p.

Ferison )
Some BisaC. Sometimes ¢ and 7.

No B is an A. Whenever g, not p.

Then not every C is an A. Then not always r, p.

A term appearing only as subject can be a constant (e.g. the present
moment in the propositional case). The resulting syllogism is said to be
singular. The propositions containing this term lose their quantification;
the Arabic convention was to count them as universally quantified. The
resulting syllogistic moods are given below.

When the propositional moods are taken with time restricted to the
present, all the propositions collapse. The resulting moods are the singular
moods but with the remaining premise also reduced; I list the results in
brackets in the righthand column below.

First figure, Barbara

CisaB. rAg.

Every Bisan A. Whenever ¢, p. (¢ A p)
Cisan A. Then r A p.

Celarent A

CisaB. rAg.

No Bis an A. Whenever g, not p. (=(¢ A p))

Then C'is not an A. Then —(r A p).

Second figure, Cesare ]
CisaB. rAg.
No Ais an B. Whenever p, not g. (—~(p A q))

Then C is not an A. Then ~(r A p).
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Camestres

Cisnota B. =(r Aqg).

Every Aisan B. Whenever g, p. (¢ A p))

Then C is not an A. Then —(r A p).

Third figure, Darapti i

BisaC. gAT.

Bisan A. qgAp. )

Then some C'is an A. Then sometimes r A p. (r A p)
Felapton

BisaC. qAT.

Bisnotan A. (g Ap).

Then not every C'is an A. Then not always when r, p. (—(r A p))

2.2 The Stoic propositional syllogistic moods
The five indemonstrables of Chrysippus are as follows.

If the first then the second.
(1) The first.
Therefore the second.

If the first then the second.
(2) Not the second.
Therefore not the first.

Not both the first and the second.
(3) The first.
Therefore not the second.

The first or the second.
(4) The first.
Therefore not the second.

The first or the second.
(5) Not the first.
Therefore the second.

Ibn Sina, Qiyas 401.7 quotes (5) in his own words. He adds that we can
also infer ¢ from “¢ or ¥" and ‘Not v".
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2.3 The calculus ZS (Ibn Sina)

We introduce a proof calculus ZS for first order logic, and we sketch a
proof of its completeness. The calculus is based on techniques known to
Ibn Sing, but I stress straight away that he would never have combined
them in this form.

The language is a standard first-order language with truth-functions
-, A, V, quantifier symbols V, 3 and infinitely many variables, but no iden-
tity. We assume the signature is relational and at most countable. We allow
ourselves to add new variables at will.

The calculus is presented in the form of a set of sequents T' - ¢, where ¢
is a formula and T is a set of formulas. Some basic sequents are given out-
right, and there are also derivation rules for deriving sequents from other
sequents. We describe these sequents with symbols ¢, ¢ etc. as metavari-
ables for formulas, and z, y etc. as metavariables for variables. The valid
sequents are those generated from these rules.

We write T', ¢ - ¢ for T U {¢} I ¥, and similar things. If z and y are
variables, we write ¢[y/z] for the result of replacing all free occurrences of
z in ¢’ by y, where ¢' is the result of replacing all bound occurrences of y in
¢ by occurrences of another variable ' distinct from y and not occurring
n o.

Basic sequents

(Refl) ¢+ ¢ (NR)
(ExcIM) F (¢ V =)

(NonQ) + —(¢p A =)

(ChrysL) (¢ V ), ~¢ F ¢ (Syl)
(ChrysR) (¢ V), "¢ (SyD
(DMA) (¢ A ) F (= V —)) (Inf)
(DMV) =(¢ V) F (= A ) (Inf)
(DMY) —Va¢ - 3z (Inf)
(DM3) —3z¢ b Yoo (Inf)
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(AD) ¢, 0 F (o AY) (Rec?)

(AEL) (o AY) F & (Rec?)
(AER) (o AY) F (Rec?)
(VE) If ¢ is any variable, then Vz¢ + ¢[t/z] (Inf?)
(@D If tis any variable, then ¢[t/z] - Jz¢ (Inf?)
(Vac) If x doesn’t occur free in ¢ then Jx¢ + ¢ (NR)
(Var) If y doesn’t occur in ¢ then 3z¢ - Jyoly/ x| (NR)

Derivation rules
(Mono) If T+ then T U U + 9.
(Trans) If T+ ¢ and foreach ¢ € T, U - ¢, then U + 1.

(IS) (Ibn Sina’s Rule) Suppose T a set of formulas and ¢, ¢ are formulas.
Let §(p) be a formula of 1S but containing a propositional variable p
which occurs only positively in §(p) and doesn’t occur in the scope
of any quantifier on a variable free in some formula of 7. If T, ¢ F- ¢
then T, 6(¢) F §(¢).

We begin with some structural properties not depending on any sym-
bol of the language.

Lemma 1 If T+ ¢ is valid, then U = ¢ for some finite U C T

Proof This is true for each of the basic sequents, and is preserved by
the derivation rules. o

Lemma2 If¢ € T then T+ ¢.

Proof Suppose ¢ € T. By (Refl), ¢ - ¢, and so by (Mono), T', ¢ - ¢. But
TU{¢}=T. o

Lemma3 IfT,¢o -y and T+ ¢, then T F 4.
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Proof By Lemma 2, T’ |- x for each y € T. By this and the assumption
T+ ¢, wehave T I x for each x € T U {¢}. So T + ¢ by (Trans) and the
assumption T', ¢ - 1. O

The proofs above illustrate the use of the rules (Refl), (Mono) and (Trans).
In future we will normally use them without mention.

Now follow some basic properties of = and V.

Lemma4 ——¢F ¢

Proof By (ChrysR), (¢ V —¢), ~—¢ - ¢. Now apply Lemma 3 with (Ex-
cIM). O

Theorem 1 (Deduction Theorem) (a) If T, ¢ ¢ then T = (¢ V —¢).
B)IfT, ¢+ pthenT + (Y V §).

Proof (a) Assume T, ¢ - . By Ibn Sind’s Rule (IS), T', (¢V—¢) F (V—¢).
By (ExcIM), T' + (¢ V =¢). Now the result follows by Lemma 3.

(b) Assume T, ¢ F 1). Then by (a), T + (1) V =—¢). But by Lemma 4
and another application of Ibn Sina’s Rule (IS), (¢ V =—¢) - (¥ V ¢). O

Lemma5 ¢ F ——¢

Proof By (Al), ¢, ¢ = (¢ A —¢), and so by the Deduction Theorem 1(a),
o F (¢ A—¢)V ==¢). So by (NonC) and (ChrysL), ¢ - ——¢. O

Lemma 6 (a) (¢ V ), ¥+ ¢
) (=g V), 0 k.

Proof (a) By Lemma 5, ¢) - =), and by (ChrysR), (¢ V —)), =) = .
(b) Similar with (ChrsL). O

Lemma?7 (¢ A—¢) Vo
Proof By (Contr) and (ChrysL). O
Lemma8 (¢ V) (¢ Vo).

Proof By (ChrysL), (¢ V ¥), —¢ F 1. Then by the Deduction Theorem,
Theorem 1(b), (¢ V ) = (¢ V ¢). O
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Lemma9 ¢+ ¢ V.

Proof By (Refl), ¢, ¢ - ¢. Now apply the Deduction Theorem, Theo-
rem 1(b). O

Lemma10 (¢ A —¢) F o
Proof By Lemma 9, (¢ A =) - ((¢ A —=¢) V ¢). Now apply Lemma 7. O

Lemma 11 (a) If ¢ - 4 then =) = —¢.
(b) If = = —¢ then ¢ + .

Proof (a) Assume ¢ - 9. Then (¢ V —¢) = (1) V =) by Ibn Sina’s rule
(IS), so - ¢ V =¢ by (ExcIM). Now use (ChrysL), (¢ V =¢), = F —o.
(b) Similar, via (¢ V =) F (¥ V —¢) and Lemma 6(a). O

Some quantifier lemmas:

Lemma 12 Suppose x doesn’t occur free in ¢. Then ¢ = Vz¢.

Proof By Lemma 11(b) it suffices to prove —Vz¢ - —¢ under the same
hypothesis. Now —Vz¢ - 3z—-¢ by (DMA), and 3z—¢ F —¢ by (Vac), prov-
ing the lemma. O

Lemma 13 Suppose x doesn’t occur free in 1 or any formula of T, and T, ¢ & 1.
Then T, 3x¢ F ).

Proof By Ibn Sind’s Rule, T', 3z¢ - 3z¢. Then by (Vac), T, 3z¢ 1. O

Lemma 14 Suppose x doesn’t occur free in any formula of T, and T+ ¢. Then
T+ Vao.

Proof First suppose T" is nonempty; let 1) be any formula of 7. Then
T,v F ¢, so by Ibn Sinad’s Rule T', Vi) - Vz¢. Hence T, ¢ - Yz¢ by Lemma
12,and so T'+ Vz¢ since ¢p € T

If T is empty then let £ be any formula not containing x, and reason as
above to get ({ V =€) - Vz¢. Then the result follows by (ExcIM). O

We say that a set T of formulas is inconsistent if for some ¢, T - ¢ and
T+ —¢. If T'is not inconsistent we say it is consistent.

Lemma 15 If T is inconsistent then for every formula &, T F €.
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Proof If T F ¢ and T F —(, then T F (¢ A —() by (AI). It follows by
Lemma 10 that 7'+ &. O

Lemma 16 If T is consistent and T+ x, then T U {x} is consistent.

Proof Suppose that T' - x but U { x } is inconsistent. Then for some ¢,
T,xF ¢and T, x F =¢. Then T'+ ( by Lemma 3, and 7" - —( for the same
reason; so 7' is inconsistent. O

Lemma 17 (a) If T is a set of formulas and ¢ a formula such that T U {¢} is
inconsistent, then T + —¢.

(b) If T is a set of formulas and ¢ a formula such that T U {—¢} is inconsistent,
then T = ¢.

Proof (a) Assume T' U {¢} is inconsistent. Then by (Al), there is some
¢ such that 7, ¢ - (¢ A =(). So by the Deduction Theorem, Theorem 1(a),
T+H (((A=C)V 9¢), and then T - —¢ by Lemma 7.

(b) Similar, using Theorem 1(b). O

Theorem 2 (Completeness Theorem) If T |= ¢, where we regard free vari-
ables as constants, then T + ¢.

Proof In fact we will prove that every consistent set of formulas has
a model. To derive the theorem as stated, suppose we don’t have T' - ¢.
Then by Lemma 17(b), TU{—¢} is consistent, so it has a model. This model
is a counterexample to T" |= ¢, so the theorem follows.

Now changing notation, we will show that if 7" is any consistent set of
formulas, then we can extend 7' to a Hintikka set without losing consis-
tency; we allow ourselves to add new variables to the language along the
way. It’s a standard result that Hintikka sets have models. I won't define
Hintikka set, because the claims below make clear what the requirements
are.

Claim 1 Suppose T is consistent and (¢ A1) € T. Then TU{¢, ¢} is consistent.
Proof of claim By (AEL), (AER) and Lemma 16. O Claim

Claim 2 Suppose T is consistent and (¢ V ) € T. Then at least one of T U {¢}
and T U {4} is consistent.
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Proof of claim Suppose to the contrary that 7 U {¢} and T U {¢} are
both inconsistent. Then by Lemma 17(a) we have T’ - —¢. But by Lemma
2 and the assumption that (¢ V ¢) € T, we alsohave T' - (¢ V ¥),s0 T + ¢
by (ChrysL). Now the same argument as for ¢ shows that 7" - =, which
establishes that T is inconsistent. 0O Claim

Claim 3 Suppose T is consistent and (¢ ) € T. Then at least one of TU{—¢}
and T'U {—p} is consistent.

Proof of claim By (DMA) and Lemma 16, T U{(—¢V —)} is consistent.
So the claim follows by Claim 2. O Claim

Claim 4 Suppose T is consistent and —(¢ V 1)) € T. Then T U {—¢, )} is
consistent.

Proof of claim By (DMV) and Lemma 16, T U{(—¢ A )} is consistent.
So the claim follows by Claim 1. O Claim

Claim 5 Suppose T is consistent and ——¢ € T. Then T U {¢} is consistent.

Proof of claim This is by Lemma 4 and Lemma 16. O Claim

Claim 6 Suppose T is consistent and VYx¢ € T. Then T U{¢[t/z] : t a variable}
is consistent.

Proof of claim By Lemma 1 it suffices to show that we can consistently
add a finite number of ¢[t/z] to T; and we can show this by induction,
adding one formula at a time. So it suffices to show that if ¢ is any variable,
T U {¢[t/z]} is consistent. But we have this by (VE) and Lemma 16. O
Claim

Claim 7 Suppose T is consistent and 3wv¢ € T, and let t be any variable not
occurring in ¢ and not occurring free in any formula in T. Then T U {¢[t/x]} is
consistent.

Proof of claim Let { be any formula in which ¢ doesn’t occur free. If
T U {¢[t/x]} is inconsistent then by Lemma 15, T, ¢[t/z] - (£ A =§). So
by Lemma 13, T, 3to[t/x] - (£ A =§). But by (Var), 3z¢ F 3t¢[t/z], which
shows that T is already inconsistent. O Claim

Claim 8 Suppose T is consistent and ~Vx¢ € T, and t has no free occurrence in
Vg or any formula in T. Then T U {—¢[t/x|} is consistent.
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Proof of claim By (DMY) and Lemma 16, TU{3z—¢} is consistent. Then
the claim follows using Claim 7. O Claim

Claim 9 Suppose T is consistent and =3x¢ € T. Then TU{—¢[t/x] : t a variable}
is consistent.

Proof of claim By (DM3) and Lemma 16, TU{Vz—¢} is consistent. Then
the claim follows using Claim 6. O Claim

Together the claims show that if T' is consistent, it can be extended to a
Hintikka set, in general in a language with more variables. With this the
proof is complete. O

The calculus for SL certainly contains some redundancies. For exam-
ple we never used (3I). It can be derived from (VE), but almost certainly
Ibn Sina would have regarded it as obviously correct in itself. By the same
token, perhaps we should have included the results of Lemmas 4 and 5 as
axioms, since Ibn Sina would certainly have reckoned that they are more
obvious in themselves than their proofs are.

2.4 Natural deduction

H14. Dag Prawitz, Natural Deduction, A Proof-Theoretic Study, Dover,
New York 20086, p. 20.
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