
ON ω1-CATEGORICAL BUT NOT ω-CATEGORICAL THEORIES

A Thesis
Submitted to the Faculty

in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

by
William Marsh

DARTMOUTH COLLEGE
Hanover, New Hampshire

June 1966

1



ABSTRACT

By generalizing to model theory notions connected with dimension, it is shown
that certain theories categorical in uncountable powers have countably many de-
numerable isomorphism types which are arranged in anω + 1 sequence under
the ordering of the possibility of elementary imbedding. It is also shown that
any countable elementary extension of a denumerable saturated model of a theory
categorical in uncountable powers is saturated.

PREFACE

This thesis should be readable by anyone with a little background in logic;
an excellent place to get such a background is the expository paper [7] of R. L.
Vaught.

Professor Vaught pointed out an error in a preliminary version of this paper
and made several useful suggestions about how to proceed. Professor M. Morley
in letters and conversation was most helpful and, in particular, pointed out to me
a theorem which is implicit in [3] that turned out to be the key to applying the
results of Chapter 1 of this thesis to theories categorical inω1 but notω. I would
like to take this opportunity to thank both of these men.

I would like to thank my advisor, Professor Donald Kreider, who was more
than generous with his time and help.

TABLE OF CONTENTS

page
Introduction 3
Chapter 0 4
Chapter I 6
Chapter II 11
Bibliography 14

2



Introduction

The Skolem-L̈owenheim Theorem says that if afirst order theory in a denumerable
language has an infinite model, it has at least one of every infinite cardinality. Łós
in [1] gave examples of theoriesT1, T2, andT3 such thatT1 was categorical for all
infinite cardinals,T2 was categorical for all uncountable cardinals but notω, and
T3 was categorical inω, but for no other infinite cardinals. Morley in [3] showed
that if a theory is categorical in one uncountable cardinal, it is categorical in all of
them. Morley gave in [2] a characterization of theories categorical in uncountable
powers and used it to prove (oral communication) that there are at most countably
many denumerable models of such a theory. The main results in this thesis are
that a certain class ofω1- but notω-categorical theories have infinitely many non-
isomorphic countable models and that an elementary extension of a countable
saturated model of anω1-categorical theory is saturated.

Chapter 0 is notation and standard definitions. Chapter 1 consists of generaliz-
ing certain algebraic concepts to a class of first-order theories and concludes with
a generalization of the Steinitz Theorem. In Chapter 2 the methods of the preced-
ing chapter are combined with known results to prove the results mentioned in the
previous paragraph.

Vaught pointed out to the author that the notion of algebraic closure in Chapter
1 is identical to that of obligation in [5], where Park uses it to investigate inter-
section properties of models. This notion and that of strongly minimal set are
closely related to Morley’s algebraic points and points transcendental in rank one,
respectively (in [3]). The notion of strongly minimal set was known to Vaught.
He, and probably others, knew the Steinitz Theorem could be generalized, though
the exact form in Chapter 1 is perhaps new. To the author’s best knowledge the
formulation of the concept of dimension presented here is also new.
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Chapter 0

An ordinal is identified with the set of its predecessors. ω = ω0 is the first infinite
ordinal and ω1 the first uncountable ordinal. If X is any set, card(X) is the first
ordinal which can be put in one-one correspondence with X . An enumeration xi

of X is a one-one function from card(X) onto X .
A similarity type τ is a function from an ordinal λ into ω.
A structure A = 〈|A|, RA

i 〉i<λ of similarity type τ ∈ ωλ is a set |A| called the
domain of A and a τ(i)-ary relation RA

i if τ(i) > 0, i < λ, and a distinguished
element ai = RA

i ∈ |A| if τ(i) = 0, i < λ.
Lτ for τ ∈ ωλ is the set of formulas of the first order language with equality

which has a τ(i)-ary predicate symbol Ri for each τ(i) > 0, i < λ, and an
individual constant symbol ci = Ri for each τ(i) = 0, i < λ. Sτ is the set of
sentences of Lτ and F j

τ for j < ω is the set of formulas whose free variables are
among {v0, v1, . . . , vj−1} where v0, v1, . . . are the variables used in Lτ (Sτ =
F 0

τ ). A complete theory T in Lτ is a subset of Sτ such that T � φ implies φ ∈ T
and for every φ ∈ Sτ , either φ ∈ T or ¬φ ∈ T , but not both.

If T is a complete theory in Lτ then φ ∼ ψ iff T � ∀v0 . . .∀vn−1[φ ↔ ψ] is
an equivalence relation on F n

τ . The equivalence classes [φ] under ∼ along with
the operations induced on them by ∧, ∨, and ¬ are a Boolean algebra denoted by
Bn(T ). P n(T ) is the set of ultrafilters in Bn(T ). L(T ) is Lτ .

If A is of similarity type τ and φ ∈ F n
τ −F n−1

τ for n > 1, then φA is the n-ary
relation on |A| determined by 〈a0, . . . , an−1〉 ∈ φA iff 〈a0, . . . , an−1〉 satisfies
φ(v0, . . . , vn−1) in A; note that φ ∼ ψ iff φA = ψA for models A of T . For φ ∈
F n

τ − F n−1
τ , φA(v0, . . . , vk−1, ak, . . . , an−1) is the set of all 〈a0, . . . , ak−1〉 such

that 〈a0, . . . , ak−1, ak, . . . , an−1〉 ∈ φA. {[φ] ∈ Bn(T )|〈a0, . . . , an−1〉 ∈ φA} is
an ultrafilter in Bn(T ) and is said to be realized by 〈a0, . . . , an−1〉 in A. th(A) is
the set of all φ ∈ Sτ which are true in A; L(A) is L(th(A)).

If A is a structure of type τ ∈ ωλ and µ < λ, then the structure 〈|A|, Ri〉i<µ is
said to be the µ-reduct of A and A is an expansion of 〈|A|, Ri〉i<µ. If X ⊆ |A| and
xi for i < card(X) is an enumeration of X , then (A, xi) is the structure 〈|A|, SA

i 〉
of type σ ∈ ωλ+card(X) where

σ(i) =

{
τ(i) if i < λ
0 if λ � i < λ + card(X)

and

SA
i =

{
RA

i if i < λ
xj if i = λ + j < λ + card(X).
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Notice that th(A) ⊆ th((A, xi)). If X = {a0, . . . , ak} and xi = ai 0 � i � k
then th((A, xi)) consists of all formulas obtained by substituting cλ+i for vi (when
free) in the formulas φ such that [φ] is in the ultrafilter realized by 〈a0, . . . , ak〉.
Thus the elements of P n(T ) correspond to consistent complete extensions of T by
adding n new individual constants to the language Lτ . We will generally call Lσ

the language appropriate to (A, xi) and will suppress the σ and the enumeration;
if xi = ai, 0 � i � k < ω we would write (A, xi) as (A, a0, . . . , ak).

If A and B are structures then A is elementary equivalent to B, A ≡ B, if
thA) = th(B). If X ⊆ |A| and f : X → |B| then f is an elementary monomor-
phism if (A, xi) ≡ (B, f(xi)) for any enumeration xi of X . A is an elementary
substructure, A ≺ B, of B if |A| ⊆ |B| and the identity map of |A| into |B| is
an elementary monomorphism. An isomorphism of A onto B is an elementary
monomorphism of |A| onto |B|. A theory T is λ-categorical if it has a model A
with card(|A|) = λ and every two such are isomorphic.

We will use ∃k!vφ(v) to mean there exist exactly k v such that φ(v), for any
k < ω; ∃k!xφ(x) is an abbreviation for the formula

∃vj1∃vj2 . . .∃vjk

[
k∧

i=1

φ(vji
) ∧ ∀vjk+1

(
φ(vjk+1

) →
k∨

i=1

vjk+1
= vji

)]
,

where the variables vji
are chosen to avoid clashes.
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Chapter I

Throughout this chapter T is a complete theory in Lτ and Lτ is countable, i.e.,
τ ∈ ωλ with λ < ω1. A, B, and C are always models of T .

The definitions in this chapter are motivated and the theorems suggested by
the two following examples of theories which are ω1- but not ω-categorical.

Example 1. The theory of algebraically closed fields of characteristic 0. The
denumerable models of this theory are algebraically closed fields whose degree of
transcendence over the rationals is countable.

Example 2. The theory of torsion-free abelian quotient groups. These are
precisely the vector spaces over the rationals considered as groups, and the denu-
merable models are those whose dimension i is such that 0 < i � ω.

Definition 1. Let X ⊆ |A|. Then the algebraic closure cl(X) of X is the
union of all finite subsets of |A| definable in (A, xi) for xi an enumeration of X .
I.e., cl(X) =

⋃
{ψA′|A′ = (A, xi), T

′ = th(A′), [ψ] ∈ B1(T ′), ψA′
is finite}. We

say X spans Y if cl(X) = Y .
In Example 1 cl(∅) = the algebraic numbers. In Example 2 cl(∅) = the trivial

subgroup. We note that cl(X) does not depend on the particular enumeration
of X used. Since Lτ is denumerable card(cl(X)) � max(card(X), ω). Also if
A ≺ B, cl(X) in B is the same as cl(X) in A, since if φB〈v0, x1, . . . , xn〉 for
x1, . . . , xn ∈ X is finite of cardinality k, then T ′ � ∃k!vφ(cλ+i1 , . . . , cλ+in), so
φA(v0, x1, . . . , xn) must contain exactly k elements also, and by the definition of
A ≺ B, these must be the same. Finally, x ∈ cl(X) implies x ∈ cl(X0) for some
finite X0 ⊆ X .

Proposition 1. For any subsets X and Y of |A|,

(i) X ⊆ cl(X)

(ii) if X ⊆ Y , then cl(X) ⊆ cl(Y )

(iii) cl(cl(X)) = cl(X).

Proof:
(i) v0 = cλ+i defines the unit set {xi}.
(ii) The language for (A, yi) contains formulas equivalent to any in the lan-

guage for (A, xi).
(iii) cl(X) ⊆ cl(cl(X)) by (i). To prove the inclusion the other way assume

a ∈ cl(cl(X)). I.e., assume that a1, . . . , an ∈ cl(X), that φA(a, a1, . . . , an), and
that there are exactly k elements y ∈ |A| such that φA(y, a1, . . . , an). Since each
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aj ∈ cl(X), aj is in a finite subset of A defined by some formula in L(th(A, xi)).
Let ψA

j be the smallest such set, for each j, 0 � j � n. Then [ψj] is an atom
in B1(th(A, xi)) for each j, 0 � j � n. Also th(A, xi) � ∃mj !vψj(v) for
some mj for each j, 0 � j � n. Since an satisfies ∃k!vφ(v, a1, . . . , an), so
does every element of ψA

n (v0). But then there are at most mn · k elements of |A|
in φA

0 (v0, a1, . . . , an−1) where φ0(v0, v1, . . . , vn−1) is the formula ∃vn[ψn(vn) ∧
φ(v0, . . . , vn)]. Continuing in this way we successively eliminate all of the ai’s
and we have that a ∈ cl(X).

In terms of the algebraic closure of a set we can introduce other notions from
algebra, in particular, that of an algebraIcally independent set.

Definition 2. X ⊆ |A| is independent if for all x ∈ X , x /∈ cl(X − {x}).
It follows from Proposition 1 (ii) that any subset of an independent set is inde-

pendent. Also any independent set is disjoint from cl(∅).
Definition 3. A set φA (and the formula φ) is called minimal if φA is infinite

and φA ∩ ψA is either finite or cofinite in φA for every ψ ∈ L(A). φA (and φ) is
called strongly minimal if φA is minimal in any consistent extension of th(A) by
constants. Let M(A) denote the union of all strongly minimal subsets of |A|.

We note in passing that if M(A) �= ∅, cl(∅) ⊆ M(A) since P strongly minimal
implies P ∪ ψA is strongly minimal for any finite ψA ⊆ |A|.

Before proving the next proposition we wish to point out a consequence of the
Compactness Theorem: If y ∈ |A| − cl(∅), then there is a structure A′ such that
A ≺ A′ and there are infinitely many elements bi ∈ |A′|, i < ω, such that each bi

realizes the ultrafilter in B1(T ) realized by y.
Proposition 2. Let X ⊆ |A|, x ∈ M(A), x /∈ cl(X) and y ∈ cl(X ∪ {x}) −

cl(X). Then x /∈ cl(X ∪ {y}).
Proof: Making use of the previous comment we can replace A by A′, if nec-

essary, so we will assume that the ultrafilter realized by y is realized by infinitely
many elements of |A|. Also, since cl(X) in A is the same as cl(∅) in (A, xi), it is
sufficient to prove the proposition for the case X = ∅.

Since x ∈ M(A), x ∈ φA
1 for some strongly minimal φ1. Since y ∈ cl({x}),

there is a φ2 ∈ F 2
τ such that φA

2 (y, x) and there are exactly k a’s in |A| such that
φA

2 (a, x) for some k < ω. Let φ0(v0) be the formula φ1(v0) ∧ (∃k!v1)φ2(v1, v0).
Then x ∈ φA

0 ⊆ φA
1 so that φA

0 is cofinite in φA
1 , since x /∈ cl(∅). Note that φA

0

is strongly minimal. Let ψ(v0) be the formula ∃v1[φ0(v1) ∧ φ2(v0, v1)]. Since
y ∈ ψA, ψA is infinite. Let ψi(v0) be, for 0 < i < ω, the formula (∃i!v1)[φ0(v1) ∧
φ2(v0, v1)]. We claim that y ∈ ψA

j for some j. If not, y ∈ Aω = ψA −
⋃

0<i<ω ψA
i .

Let y = a0 and a0, a1, . . . , ak be elements which realize the same ultrafilter as y;
then a0, a1, . . . , ak ∈ Aω. Let Pi = {a|φA

0 (a) ∧ φ2(a, ai)} for 0 � i � k. Then
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by the construction of Aω, each Pi is an infinite subset of φA
0 . But each element of

φA
0 is related to exactly k elements by φA

2 , so
⋂k

i=0 Pi = ∅. Therefore for some i,
φA

0 − Pi is infinite, which contradicts the strong minimality of φA
0 . Thus y ∈ ψA

j ,
j < ω. But then x ∈ cl({y}).

Theorem 1. Let X ⊆ M(A), Y ⊆ M(A), cl(X) ⊆ cl(Y ) and X be in-
dependent. Then (i) card(X) � card(Y ) and (ii) there is a Y0 ⊆ Y such that
cl(X ∪ Y0) = cl(Y ) and X ∪ Y0 is independent.

Proof: (i) Let X = {xi}, i < λ = card(X), and Y = {yi}, i < µ = card(Y ).
We will define y′i and Xi = {xj|i � j < λ}∪{y′j|j < i}, such that cl(Xi) = cl(X)
for all i � λ. Note that X0 = X and Xλ ⊆ Y , so that cl(X0) = cl(X) and X0 is
independent.

Assume cl(Xi) = cl(X) and Xi is independent. There is some y ∈ Y −
cl(Xi −{xi}), otherwise Y ⊆ cl(Xi −{xi}) and therefore xi ∈ cl(Y ) ⊆ cl(Xi −
{xi}) contradicting the independence of Xi. Let y′i be the first such y in the
enumeration yj of Y . Then xi ∈ cl((Xi−{xi})∪{yi}) = cl(Xi+1) by Proposition
2. Therefore, cl(Xi+1) = cl(Xi) = cl(X). y′i ∈ cl(Xi+1 − {yi}) by construction
of Xi+1. Suppose x ∈ cl(Xi+1 − {x}) for some other x ∈ Xi+1. Then x /∈
cl(Xi+1 −{x, y′i}), since Xi+1 −{y′i} ⊆ Xi, which is independent; and subsets of
independent sets are independent. Since y′i ∈ M(A) we can apply Proposition 2
again and get y′i ∈ cl(Xi+1−{yi}) which we just saw can not be. We have proved
that Xi+1 is independent and cl(Xi+1) = cl(X). Obviously, Xδ is independent and
cl(Xδ) = cl(X) for any limit ordinal δ if the same is true for all its predecessors.
The y′i are distinct, so (i) is proved.

(ii) Let Y = {yi}, i < µ = card(Y ). Define Y0 = {yi|yi /∈ cl(X ∪ {yj|j <
i})}. By construction and Proposition 1 (iii), cl(X ∪ Y0) = cl(Y ). Suppose
yj ∈ Y0 and yj ∈ cl(X ∪ Y0 − {yj}). Then y ∈ cl(Y1) where Y1 is finite, y /∈ Y2

for any proper subset Y2 of Y1, and Y1 ⊆ X∪Y −{yj}. Let i be the largest ordinal
such that yi ∈ Y1. Then i > j, since yj ∈ Y0. But again we apply Proposition 2
and get yi ∈ cl((Y1 − {yi}) ∪ {yj}) which contradicts yi ∈ Y0.

Definition 4. Let Y = cl(X), X ⊆ M(A). The dimension of Y , written
dim(Y ), is the number of elements in any independent set Y0 ⊆ M(A) such that
cl(Y0) = Y . Such a Y0 is called a basis for Y .

Corollary 1. (i) dim(Y ) is well defined.
(ii) If X1 ⊆ M(A), X2 ⊆ M(A) and cl(X1) ⊂ cl(X2) with cl(X1) �= cl(X2),

then dim(cl(X2)) � dim(cl(X1)) + 1.
This corollary is proved by the same arguments used in proving the corre-

sponding results in linear algebra. We now proceed to some results concerning
elementary monomorphisms. We first note that any elementary monomorphism

8



carries independent sets into independent sets.
Proposition 3. If f : X → |B|, X ⊆ |A|, is an elementary monomorphism,

then f can be extended to an elementary monomorphism f : cl(X) → |B| whose
range is cl(f [X]).

Proof: (A, xi) ≡ (B, f(xi)) since f is an elementary monomorphism. Note
that cl(X) = cl(∅) in (A, xi). Let ψj , j < α, be an enumeration of one rep-
resentative of each atom [ψ] such that ψ(A,xi) is finite. Then cl(X) = cl(∅) =⋃

j<α ψ
(A,xi)
j . Let yi, i < β be an enumeration of cl(∅) − X such that n < j,

yn ∈ ψ
(A,xi)
k and yj ∈ ψ

(A,xi)
m , together imply k � m. Let f(y0) be any element

of ψ
(B,f(xi))
0 . Now (A, xi, y0) ≡ (A, f(xi), f(y0)). Replacing X by X ∪ {y0},

etc., we get (A, xi, yi) ≡ (A, f(xi), f(yi)) which says that the f is an elementary
monomorphism with domain cl(X). Obviously the range of f is cl(f [X]).

Theorem 2. If φA is strongly minimal in A, φB is strongly minimal, X and
Y are independent, X ⊆ φA, Y ⊆ φB and f : X → Y is one-one, then f is an
elementary monomorphism.

Proof: If ψC is a minimal set then every c ∈ ψC−cl(∅) realizes the same ultra-
filter in B1(T ); if ψC is strongly minimal, then every c ∈ ψC − cl(Z) realizes the
same ultrafilter in B1(th(C, zi)). Let xi be an enumeration of X . Since φA and φB

are strongly minimal and X and Y are independent, (A, x0) ≡ (B, f(x0)) since
x0 ∈ φA − cl(∅) and y0 ∈ φB − cl(∅). Also if (A, xi)i<α ≡ (B, f(xi))i<α for α <
card(X), then (A, xi)i<α+1 ≡ (B, f(xi))i<α+1; if (A, xi)i<α ≡ (B, f(xi))i<α for
every α < β, β a limit ordinal, then (A, xi)i<β ≡ (B, f(xi))i<β . Therefore, by
induction, (A, xi)i<card(X) ≡ (A, f(xi))i<card(X).

Definition 5. X ⊆ |A| is indiscernible if every one-one f ∈ XX is an ele-
mentary monomorphism.

Corollary 2. If φA is strongly minimal, X ⊆ φA, and X is independent, then
X is indiscernible.

Definition 6. A is properly imbeddable in B, written A < B if there is an
elementary monomorphism mapping |A| properly into |B|.

Note that < is transitive.
Theorem 3. Let T be such that the domain of every model is strongly minimal.

Then
(i) T is ω1-categorical.
(ii) If T is not ω0-categorical it has ω denumerable models Ai, i < ω + 1 such

that every denumerable model is isomorphic to exactly one of them and i < j
implies Ai < Aj .

(iii) A < A iff dim(|A|) is infinite.
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Proof: (i) Let card(A) = card(B) = ω1. Choose bases X and Y for |A| and
|B| respectively. As noted earlier, card(X) = card(Y ) = ω1. Choose any one-one
correspondence f between them and apply Theorem 2 and Proposition 3.

(ii) As above, if dim(|A|) = dim(|B|), A and B are isomorphic. If A is
denumerable, dim(|A|) � ω. If X ⊆ |C| and cl(X) = X , then X is a model of
T iff X is infinite. For, by the assumptions made about T at the beginning of this
chapter, X must be infinite to be a model of T . If X is infinite and cl(X) = X ,
then φC(v0, x1, . . . , xn) is either finite or cofinite in |C|. If it is finite, it is in
cl(X) = X; if it is cofinite in |C| it intersects X . Thus X ≺ C (see [6]), and is
therefore a model of T . Let card(C) = ω1. Choose X = {xi}, i < ω, X ⊆ |C|,
with X independent. Let k be the least ordinal such that cl({xi|i < k}) is infinite.
If k = ω0, T is ω0-categorical. If k < ω let Aj = cl({xi|i < k+j}) for j < ω+1.
By Theorem 2 and Proposition 3 if i < j, Ai < Aj .

(iii) If dim(|A|) is infinite, choose a basis X for |A| and a one-one but not onto
f ∈ XX , and then apply Theorem 2 and Proposition 3. If dim(|A|) is finite then
not A < A, by Corollary 1 (ii).
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Chapter II

In this chapter we assume that T is a complete theory in a denumerable language
which is ω1-categorical. A, B and C are models of T .

A is a prime model for T if for every model B there is an elementary monomor-
phism of A into B. A is a saturated model if for every subset X ⊆ |A| with
card(X) < card(|A|) every ultrafilter of B1(th((A, xi))) is realized in (A, xi).
Vaught showed in [7] that every T satisfying the assumptions which we made
above has Pn(T ) denumerable for each n and therefore T has a denumerable sat-
urated model and a prime model, both of which are unique up to isomorphisms;
the prime model A is atomic and realizes no non-principle ultrafilter in any Bn(T )
and it has no proper elementary substructures, i.e., A′ ≺ A implies A′ = A.

In [21 Morley defines B to be a prime extension of A if A ≺ B, A �= B and for
any C such that A ≺ C, there is an elementary monomorphism of B into C which
is the identity on A. Using Vaught’s Two Cardinal Theorem, Morley observed that
if A ≺ B, A �= B, then φB − φA �= ∅ for models A and B of an ω1-categorical T .
He then proved that T is ω1-categorical iff every denumerable model has a prime
extension, and that if T is ω1-categorical every such prime extension is minimal
and any two prime extensions of the same model are isomorphic. Using these
results, he has shown (oral communication) that an ω1-categorical theory has at
most ω denumerable models.

In [3] he showed that if T is categorical in one uncountable power it is in all,
and every uncountable model is saturated. The proof of Theorem 5.4 in [3] also
proves the following theorem, as Professor Morley pointed out to the author: If
T is ω1-categorical and some filter in B1(T ) is not realized in A, then there is no
infinite indiscernible subset of |A|.

Theorem 4. Let T be ω1- but not ω0-categorical, with B1(T ) infinite and
φ ∈ L(T ) defining a strongly minimal set. Then every denumerable model of T
is isomorphic to exactly one of an ω + 1 sequence A0 < A1 < A2 < . . . < Aω of
models of T .

Proof: Let A0 be a prime model of T . We assert that dim(cl(φA0)) = k < ω,
for some k. For if not, any basis would be an infinite indiscernible subset of |A0|,
and since B1(T ) is infinite it has a non-principle ultrafilter, which is not realized
in A0, because A0 is prime; this would contradict the last theorem of Morley
mentioned above.

Let Ai be a prime extension of Ai−1 for 0 < i < ω and let Aω =
⋃

i<ω Ai.
For i < j � ω, φAj − φAi �= ∅, and so by Corollary 1 (ii) dim(cl(φAi)) � k + 1,
for i � ω. Thus dim(cl(φAω)) = ω, and we contend that equality holds for
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i < ω also. Let X = {xi}i<ω be an independent subset of φAω such that xi+k ∈
φAi+1 for all i < ω, and x0, . . . , xk−1 ∈ φA0 . The structure A′

0 = (A0, xi)i<k

contains a prime model of its theory T ′
0, and since A0 is minimal as a prime model

of T , A′
0 is a prime model for T ′

0. Let T ′
j be the theory of the structure A′

j =
(Aj, xi)i<k+j for j < ω. A′

j is a prime model for T ′
j for j < ω, for otherwise,

let i be the smallest number such that A′
i+1 is not a prime model of T ′

i+1. Let
B′

i+1 ≺ A′
i+1, with B′

i+1 = (Bi+1, x0, . . . , xk+1), be a prime model for T ′
i+1.

Then (Bi+1, x0, . . . , xk+i−1) is a model of T ′
i and contains a prime model B′

i of
T ′

i , which is therefore isomorphic to A′
i. xk+1 ∈ |Bi+1| − |Bi|. Thus Bi+1 is

a proper elementary extension of Bi
∼= Ai. Therefore Ai+1 can be imbedded

in Bi+1 by an elementary monomorphism f which takes Ai onto Bi; we thus
have f(Ai) ≺ f(Ai+1) ≺ Bi+1 ≺ Ai+1. But then φf(Ai+1) ⊆ φBi+1 ⊆ φAi+1

and dim(cl(φf(Ai+1))) = dim(cl(φAi+1)), since they are isomorphic. Therefore
φf(Ai+1) = φBi+1 = φAi+1 , and Bi+1 = Ai+1, which proves that A′

i+1 is a prime
model of T ′

i+1. As a prime model of T ′
j , A′

j is atomic and φAj is a union of
atoms. cl(φA0) = cl({x0, . . . , xk−1}) because dim(cl(φA0)) = k, so every atom
in φA0 , and therefore in φA′

j is finite. Thus cl(φA′
j) = cl(∅) in A′

j . Therefore
cl(φAj) = cl({x0, . . . , xk+j−1}), and dim(cl(φAj)) = k + j. Thus all the Ai,
i � ω are distinct.

If B is a denumerable model of T with dim(cl(φB)) = k + j for some
0 � j < ω, then B′ = (B, b0, . . . , bk+j−1) is a model of T ′

j and since we have
dim(cl(φB)) = k + j, B′ is in fact a prime model of T ′

j . Therefore B′ ∼= A′
j and

therefore B ∼= Aj .
Finally, if B is a denumerable model of T with dim(cl(φB)) = ω, let {yi},

i < ω, be a basis for φB with yi ∈ φB for all i < ω. B′
j = (B, yi)i<j+k is a

model of T ′
j and contains a prime model C ′

j = (Cj, yi)i<j+k; thus C ′
j
∼= A′

j and
Cj

∼= Aj . Let Cω =
⋃

i<ω Ci. Then yi ∈ |Cω| for all i < ω, and since the yi are a
basis, φCω = φB. Since Cω ≺ B, we have Cω = B by Morley’s use of the Vaught
Two Cardinal Theorem. Thus any denumerable model B with dim(φB) = ω is
isomorphic to Aω. Since the denumerable saturated model of T must be such, Aω

is saturated. Morley had observed that Aω is saturated (oral communication). This
completes the proof of Theorem 4.

Finally we wish to prove a result about denumerable saturated models of arbi-
trary ω1- but not ω-categorical theories which is complementary to Vaught’s result
that prime models of such theories are minimal. We first prove that by adding a
finite number of constants to a general ω1- but not ω-categorical theory we can get
a theory which satisfies the hypothesis of Theorem 4. It follows immediately from
the Ryll-Nardzewski Theorem (see [7] p. 303) that if T is not ω-categorical then
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by extending T to T ′ by adding some finite set of constants we can make B1(T ′)
infinite.

It is easy to see that if every model A of T with card(|A|)) = ω1 is saturated,
so is every model B of th((A, xi)i<λ) for any {xi} ⊆ |A| with λ < ω1. Using this
fact we can see that by adding a finite number of constants to an ω1-categorical
T , we can define a strongly minimal set. For, if we suppose the contrary, we can
partition any infinite set S (of which there must be at least one) into infinite sets
S1

1 and S1
2 by adding a finite set F1 of constants; given Sn

1 , S
n
2 , . . . , S

n
2n , we can

partition each into a pair of infinite sets, using some finite set Fn of constants. The
theory T ′ obtained by adding the constants

⋃
i<ω Fi to T will be ω1-categorical if

T is, by the previous remark, but P 1(T ′) will be uncountable, which contradicts
the result in [7] mentioned at the beginning of this chapter.

Now let T be ω1- but not ω-categorical and let T ′ be an extension by a finite
set ci, i < n, of constants which satisfies the hypothesis of Theorem 4. Let B be a
denumerable saturated model of T . Then B contains an n-tuple 〈b0, . . . , bn−1〉 of
the type used in extending T to T ′, and (B, b0, . . . , bn−1) = B′ is a model of T ′.
If B ≺ C, with card(|C|) = ω, then (B, b0, . . . , bn−1) ≺ (C, b0, . . . , bn−1) = C ′.
The dimension of the closure of the strongly minimal set φB′

is infinite, therefore
so is the dimension of the closure of φC′

. Thus C ′ is saturated as a model of T ′,
and C, being a reduct of a saturated model is saturated (see [4] p. 50). We have
proved

Theorem 5. If T is ω1- but not ω-categorical, B is a denumerable saturated
model of T , and B ≺ C with card(|C|) = ω, then C is saturated.
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