ON ω_{1}-CATEGORICAL BUT NOT ω-CATEGORICAL THEORIES

A Thesis
Submitted to the Faculty in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

by
William Marsh

DARTMOUTH COLLEGE
Hanover, New Hampshire
June 1966

Abstract

By generalizing to model theory notions connected with dimension, it is shown that certain theories categorical in uncountable powers have countably many denumerable isomorphism types which are arranged in an $\omega+1$ sequence under the ordering of the possibility of elementary imbedding. It is also shown that any countable elementary extension of a denumerable saturated model of a theory categorical in uncountable powers is saturated.

PREFACE

This thesis should be readable by anyone with a little background in logic; an excellent place to get such a background is the expository paper [7] of R. L. Vaught.

Professor Vaught pointed out an error in a preliminary version of this paper and made several useful suggestions about how to proceed. Professor M. Morley in letters and conversation was most helpful and, in particular, pointed out to me a theorem which is implicit in [3] that turned out to be the key to applying the results of Chapter 1 of this thesis to theories categorical in ω_{1} but not ω. I would like to take this opportunity to thank both of these men.

I would like to thank my advisor, Professor Donald Kreider, who was more than generous with his time and help.

TABLE OF CONTENTS

	page
Introduction	3
Chapter 0	4
Chapter I	6
Chapter II	11
Bibliography	14

Introduction

The Skolem-Löwenheim Theorem says that if a first order theory in a denumerable language has an infinite model, it has at least one of every infinite cardinality. Łoś in [1] gave examples of theories T_{1}, T_{2}, and T_{3} such that T_{1} was categorical for all infinite cardinals, T_{2} was categorical for all uncountable cardinals but not ω, and T_{3} was categorical in ω, but for no other infinite cardinals. Morley in [3] showed that if a theory is categorical in one uncountable cardinal, it is categorical in all of them. Morley gave in [2] a characterization of theories categorical in uncountable powers and used it to prove (oral communication) that there are at most countably many denumerable models of such a theory. The main results in this thesis are that a certain class of ω_{1} - but not ω-categorical theories have infinitely many nonisomorphic countable models and that an elementary extension of a countable saturated model of an ω_{1}-categorical theory is saturated.

Chapter 0 is notation and standard definitions. Chapter 1 consists of generalizing certain algebraic concepts to a class of first-order theories and concludes with a generalization of the Steinitz Theorem. In Chapter 2 the methods of the preceding chapter are combined with known results to prove the results mentioned in the previous paragraph.

Vaught pointed out to the author that the notion of algebraic closure in Chapter 1 is identical to that of obligation in [5], where Park uses it to investigate intersection properties of models. This notion and that of strongly minimal set are closely related to Morley's algebraic points and points transcendental in rank one, respectively (in [3]). The notion of strongly minimal set was known to Vaught. He , and probably others, knew the Steinitz Theorem could be generalized, though the exact form in Chapter 1 is perhaps new. To the author's best knowledge the formulation of the concept of dimension presented here is also new.

Chapter 0

An ordinal is identified with the set of its predecessors. $\omega=\omega_{0}$ is the first infinite ordinal and ω_{1} the first uncountable ordinal. If X is any set, $\operatorname{card}(X)$ is the first ordinal which can be put in one-one correspondence with X. An enumeration x_{i} of X is a one-one function from $\operatorname{card}(X)$ onto X.

A similarity type τ is a function from an ordinal λ into ω.
A structure $A=\langle | A\left|, R_{i}^{A}\right\rangle_{i<\lambda}$ of similarity type $\tau \in \omega^{\lambda}$ is a set $|A|$ called the domain of A and a $\tau(i)$-ary relation R_{i}^{A} if $\tau(i)>0, i<\lambda$, and a distinguished element $a_{i}=R_{i}^{A} \in|A|$ if $\tau(i)=0, i<\lambda$.
L_{τ} for $\tau \in \omega^{\lambda}$ is the set of formulas of the first order language with equality which has a $\tau(i)$-ary predicate symbol R_{i} for each $\tau(i)>0, i<\lambda$, and an individual constant symbol $c_{i}=R_{i}$ for each $\tau(i)=0, i<\lambda$. S_{τ} is the set of sentences of L_{τ} and F_{τ}^{j} for $j<\omega$ is the set of formulas whose free variables are among $\left\{v_{0}, v_{1}, \ldots, v_{j-1}\right\}$ where v_{0}, v_{1}, \ldots are the variables used in $L_{\tau}\left(S_{\tau}=\right.$ F_{τ}^{0}). A complete theory T in L_{τ} is a subset of S_{τ} such that $T \vdash \phi$ implies $\phi \in T$ and for every $\phi \in S_{\tau}$, either $\phi \in T$ or $\neg \phi \in T$, but not both.

If T is a complete theory in L_{τ} then $\phi \sim \psi$ iff $T \vdash \forall v_{0} \ldots \forall v_{n-1}[\phi \leftrightarrow \psi]$ is an equivalence relation on F_{τ}^{n}. The equivalence classes $[\phi]$ under \sim along with the operations induced on them by \wedge, \vee, and \neg are a Boolean algebra denoted by $B^{n}(T) . P^{n}(T)$ is the set of ultrafilters in $B^{n}(T) . L(T)$ is L_{τ}.

If A is of similarity type τ and $\phi \in F_{\tau}^{n}-F_{\tau}^{n-1}$ for $n>1$, then ϕ^{A} is the n-ary relation on $|A|$ determined by $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in \phi^{A}$ iff $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ satisfies $\phi\left(v_{0}, \ldots, v_{n-1}\right)$ in A; note that $\phi \sim \psi$ iff $\phi^{A}=\psi^{A}$ for models A of T. For $\phi \in$ $F_{\tau}^{n}-F_{\tau}^{n-1}, \phi^{A}\left(v_{0}, \ldots, v_{k-1}, a_{k}, \ldots, a_{n-1}\right)$ is the set of all $\left\langle a_{0}, \ldots, a_{k-1}\right\rangle$ such that $\left\langle a_{0}, \ldots, a_{k-1}, a_{k}, \ldots, a_{n-1}\right\rangle \in \phi^{A} .\left\{[\phi] \in B^{n}(T) \mid\left\langle a_{0}, \ldots, a_{n-1}\right\rangle \in \phi^{A}\right\}$ is an ultrafilter in $B^{n}(T)$ and is said to be realized by $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ in A. $\operatorname{th}(A)$ is the set of all $\phi \in S_{\tau}$ which are true in $A ; L(A)$ is $L(\operatorname{th}(A))$.

If A is a structure of type $\tau \in \omega^{\lambda}$ and $\mu<\lambda$, then the structure $\langle | A\left|, R_{i}\right\rangle_{i<\mu}$ is said to be the μ-reduct of A and A is an expansion of $\langle | A\left|, R_{i}\right\rangle_{i<\mu}$. If $X \subseteq|A|$ and x_{i} for $i<\operatorname{card}(X)$ is an enumeration of X, then $\left(A, x_{i}\right)$ is the structure $\langle | A\left|, S_{i}^{A}\right\rangle$ of type $\sigma \in \omega^{\lambda+\operatorname{card}(X)}$ where

$$
\sigma(i)=\left\{\begin{array}{cl}
\tau(i) & \text { if } i<\lambda \\
0 & \text { if } \lambda \leqslant i<\lambda+\operatorname{card}(X)
\end{array}\right.
$$

and

$$
S_{i}^{A}=\left\{\begin{array}{cl}
R_{i}^{A} & \text { if } i<\lambda \\
x_{j} & \text { if } i=\lambda+j<\lambda+\operatorname{card}(X) .
\end{array}\right.
$$

Notice that $\operatorname{th}(A) \subseteq \operatorname{th}\left(\left(A, x_{i}\right)\right)$. If $X=\left\{a_{0}, \ldots, a_{k}\right\}$ and $x_{i}=a_{i} 0 \leqslant i \leqslant k$ then $\operatorname{th}\left(\left(A, x_{i}\right)\right)$ consists of all formulas obtained by substituting $c_{\lambda+i}$ for v_{i} (when free) in the formulas ϕ such that $[\phi]$ is in the ultrafilter realized by $\left\langle a_{0}, \ldots, a_{k}\right\rangle$. Thus the elements of $P^{n}(T)$ correspond to consistent complete extensions of T by adding n new individual constants to the language L_{τ}. We will generally call L_{σ} the language appropriate to $\left(A, x_{i}\right)$ and will suppress the σ and the enumeration; if $x_{i}=a_{i}, 0 \leqslant i \leqslant k<\omega$ we would write $\left(A, x_{i}\right)$ as $\left(A, a_{0}, \ldots, a_{k}\right)$.

If A and B are structures then A is elementary equivalent to $B, A \equiv B$, if $\operatorname{th} A)=\operatorname{th}(B)$. If $X \subseteq|A|$ and $f: X \rightarrow|B|$ then f is an elementary monomorphism if $\left(A, x_{i}\right) \equiv\left(B, f\left(x_{i}\right)\right)$ for any enumeration x_{i} of $X . A$ is an elementary substructure, $A \prec B$, of B if $|A| \subseteq|B|$ and the identity map of $|A|$ into $|B|$ is an elementary monomorphism. An isomorphism of A onto B is an elementary monomorphism of $|A|$ onto $|B|$. A theory T is λ-categorical if it has a model A with $\operatorname{card}(|A|)=\lambda$ and every two such are isomorphic.

We will use $\exists^{k}!v \phi(v)$ to mean there exist exactly $k v$ such that $\phi(v)$, for any $k<\omega ; \exists^{k}!x \phi(x)$ is an abbreviation for the formula

$$
\exists v_{j_{1}} \exists v_{j_{2}} \ldots \exists v_{j_{k}}\left[\bigwedge_{i=1}^{k} \phi\left(v_{j_{i}}\right) \wedge \forall v_{j_{k+1}}\left(\phi\left(v_{j_{k+1}}\right) \rightarrow \bigvee_{i=1}^{k} v_{j_{k+1}}=v_{j_{i}}\right)\right]
$$

where the variables $v_{j_{i}}$ are chosen to avoid clashes.

Chapter I

Throughout this chapter T is a complete theory in L_{τ} and L_{τ} is countable, i.e., $\tau \in \omega^{\lambda}$ with $\lambda<\omega_{1} . A, B$, and C are always models of T.

The definitions in this chapter are motivated and the theorems suggested by the two following examples of theories which are ω_{1} - but not ω-categorical.

Example 1. The theory of algebraically closed fields of characteristic 0 . The denumerable models of this theory are algebraically closed fields whose degree of transcendence over the rationals is countable.

Example 2. The theory of torsion-free abelian quotient groups. These are precisely the vector spaces over the rationals considered as groups, and the denumerable models are those whose dimension i is such that $0<i \leqslant \omega$.

Definition 1. Let $X \subseteq|A|$. Then the algebraic closure $\operatorname{cl}(X)$ of X is the union of all finite subsets of $|A|$ definable in $\left(A, x_{i}\right)$ for x_{i} an enumeration of X. I.e., $\operatorname{cl}(X)=\bigcup\left\{\psi^{A^{\prime}} \mid A^{\prime}=\left(A, x_{i}\right), T^{\prime}=\operatorname{th}\left(A^{\prime}\right),[\psi] \in B^{1}\left(T^{\prime}\right), \psi^{A^{\prime}}\right.$ is finite $\}$. We say X spans Y if $\operatorname{cl}(X)=Y$.

In Example $1 \operatorname{cl}(\emptyset)=$ the algebraic numbers. In Example $2 \mathrm{cl}(\emptyset)=$ the trivial subgroup. We note that $\operatorname{cl}(X)$ does not depend on the particular enumeration of X used. Since L_{τ} is denumerable $\operatorname{card}(\operatorname{cl}(X)) \leqslant \max (\operatorname{card}(X), \omega)$. Also if $A \prec B, \operatorname{cl}(X)$ in B is the same as $\operatorname{cl}(X)$ in A, since if $\phi^{B}\left\langle v_{0}, x_{1}, \ldots, x_{n}\right\rangle$ for $x_{1}, \ldots, x_{n} \in X$ is finite of cardinality k, then $T^{\prime} \vdash \exists^{k}!v \phi\left(c_{\lambda+i_{1}}, \ldots, c_{\lambda+i_{n}}\right)$, so $\phi_{A}\left(v_{0}, x_{1}, \ldots, x_{n}\right)$ must contain exactly k elements also, and by the definition of $A \prec B$, these must be the same. Finally, $x \in \operatorname{cl}(X)$ implies $x \in \operatorname{cl}\left(X_{0}\right)$ for some finite $X_{0} \subseteq X$.

Proposition 1. For any subsets X and Y of $|A|$,
(i) $X \subseteq \operatorname{cl}(X)$
(ii) if $X \subseteq Y$, then $\operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$
(iii) $\operatorname{cl}(\operatorname{cl}(X))=\operatorname{cl}(X)$.

Proof:

(i) $v_{0}=c_{\lambda+i}$ defines the unit set $\left\{x_{i}\right\}$.
(ii) The language for $\left(A, y_{i}\right)$ contains formulas equivalent to any in the language for $\left(A, x_{i}\right)$.
(iii) $\operatorname{cl}(X) \subseteq \operatorname{cl}(\operatorname{cl}(X))$ by (i). To prove the inclusion the other way assume $a \in \operatorname{cl}(\operatorname{cl}(X))$. I.e., assume that $a_{1}, \ldots, a_{n} \in \operatorname{cl}(X)$, that $\phi^{A}\left(a, a_{1}, \ldots, a_{n}\right)$, and that there are exactly k elements $y \in|A|$ such that $\phi^{A}\left(y, a_{1}, \ldots, a_{n}\right)$. Since each
$a_{j} \in \operatorname{cl}(X), a_{j}$ is in a finite subset of A defined by some formula in $L\left(\operatorname{th}\left(A, x_{i}\right)\right)$. Let ψ_{j}^{A} be the smallest such set, for each $j, 0 \leqslant j \leqslant n$. Then $\left[\psi_{j}\right]$ is an atom in $B^{1}\left(\operatorname{th}\left(A, x_{i}\right)\right)$ for each $j, 0 \leqslant j \leqslant n$. Also th $\left(A, x_{i}\right) \vdash \exists^{m_{j}}!v \psi_{j}(v)$ for some m_{j} for each $j, 0 \leqslant j \leqslant n$. Since a_{n} satisfies $\exists^{k}!v \phi\left(v, a_{1}, \ldots, a_{n}\right)$, so does every element of $\psi_{n}^{A}\left(v_{0}\right)$. But then there are at most $m_{n} \cdot k$ elements of $|A|$ in $\phi_{0}^{A}\left(v_{0}, a_{1}, \ldots, a_{n-1}\right)$ where $\phi_{0}\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ is the formula $\exists v_{n}\left[\psi_{n}\left(v_{n}\right) \wedge\right.$ $\left.\phi\left(v_{0}, \ldots, v_{n}\right)\right]$. Continuing in this way we successively eliminate all of the a_{i} 's and we have that $a \in \operatorname{cl}(X)$.

In terms of the algebraic closure of a set we can introduce other notions from algebra, in particular, that of an algebraIcally independent set.

Definition 2. $X \subseteq|A|$ is independent if for all $x \in X, x \notin \operatorname{cl}(X-\{x\})$.
It follows from Proposition 1 (ii) that any subset of an independent set is independent. Also any independent set is disjoint from $\operatorname{cl}(\emptyset)$.

Definition 3. A set ϕ^{A} (and the formula ϕ) is called minimal if ϕ^{A} is infinite and $\phi^{A} \cap \psi^{A}$ is either finite or cofinite in ϕ^{A} for every $\psi \in L(A)$. ϕ^{A} (and ϕ) is called strongly minimal if ϕ^{A} is minimal in any consistent extension of th (A) by constants. Let $M(A)$ denote the union of all strongly minimal subsets of $|A|$.

We note in passing that if $M(A) \neq \emptyset, \mathrm{cl}(\emptyset) \subseteq M(A)$ since P strongly minimal implies $P \cup \psi^{A}$ is strongly minimal for any finite $\psi^{A} \subseteq|A|$.

Before proving the next proposition we wish to point out a consequence of the Compactness Theorem: If $y \in|A|-\operatorname{cl}(\emptyset)$, then there is a structure A^{\prime} such that $A \prec A^{\prime}$ and there are infinitely many elements $b_{i} \in\left|A^{\prime}\right|, i<\omega$, such that each b_{i} realizes the ultrafilter in $B^{1}(T)$ realized by y.

Proposition 2. Let $X \subseteq|A|, x \in M(A), x \notin \operatorname{cl}(X)$ and $y \in \operatorname{cl}(X \cup\{x\})-$ $\operatorname{cl}(X)$. Then $x \notin \mathrm{cl}(X \cup\{y\})$.

Proof: Making use of the previous comment we can replace A by A^{\prime}, if necessary, so we will assume that the ultrafilter realized by y is realized by infinitely many elements of $|A|$. Also, since $\operatorname{cl}(X)$ in A is the same as $\operatorname{cl}(\emptyset)$ in $\left(A, x_{i}\right)$, it is sufficient to prove the proposition for the case $X=\emptyset$.

Since $x \in M(A), x \in \phi_{1}^{A}$ for some strongly minimal ϕ_{1}. Since $y \in \operatorname{cl}(\{x\})$, there is a $\phi_{2} \in F_{\tau}^{2}$ such that $\phi_{2}^{A}(y, x)$ and there are exactly $k a$'s in $|A|$ such that $\phi_{2}^{A}(a, x)$ for some $k<\omega$. Let $\phi_{0}\left(v_{0}\right)$ be the formula $\phi_{1}\left(v_{0}\right) \wedge\left(\exists \exists^{k}!v_{1}\right) \phi_{2}\left(v_{1}, v_{0}\right)$. Then $x \in \phi_{0}^{A} \subseteq \phi_{1}^{A}$ so that ϕ_{0}^{A} is cofinite in ϕ_{1}^{A}, since $x \notin \operatorname{cl}(\emptyset)$. Note that ϕ_{0}^{A} is strongly minimal. Let $\psi\left(v_{0}\right)$ be the formula $\exists v_{1}\left[\phi_{0}\left(v_{1}\right) \wedge \phi_{2}\left(v_{0}, v_{1}\right)\right]$. Since $y \in \psi^{A}, \psi^{A}$ is infinite. Let $\psi_{i}\left(v_{0}\right)$ be, for $0<i<\omega$, the formula $\left(\exists^{i}!v_{1}\right)\left[\phi_{0}\left(v_{1}\right) \wedge\right.$ $\left.\phi_{2}\left(v_{0}, v_{1}\right)\right]$. We claim that $y \in \psi_{j}^{A}$ for some j. If not, $y \in A_{\omega}=\psi^{A}-\bigcup_{0<i<\omega} \psi_{i}^{A}$. Let $y=a_{0}$ and $a_{0}, a_{1}, \ldots, a_{k}$ be elements which realize the same ultrafilter as y; then $a_{0}, a_{1}, \ldots, a_{k} \in A_{\omega}$. Let $P_{i}=\left\{a \mid \phi_{0}^{A}(a) \wedge \phi_{2}\left(a, a_{i}\right)\right\}$ for $0 \leqslant i \leqslant k$. Then
by the construction of A_{ω}, each P_{i} is an infinite subset of ϕ_{0}^{A}. But each element of ϕ_{0}^{A} is related to exactly k elements by ϕ_{2}^{A}, so $\bigcap_{i=0}^{k} P_{i}=\emptyset$. Therefore for some i, $\phi_{0}^{A}-P_{i}$ is infinite, which contradicts the strong minimality of ϕ_{0}^{A}. Thus $y \in \psi_{j}^{A}$, $j<\omega$. But then $x \in \operatorname{cl}(\{y\})$.

Theorem 1. Let $X \subseteq M(A), Y \subseteq M(A), \operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$ and X be independent. Then (i) $\operatorname{card}(X) \leqslant \operatorname{card}(Y)$ and (ii) there is a $Y_{0} \subseteq Y$ such that $\operatorname{cl}\left(X \cup Y_{0}\right)=\operatorname{cl}(Y)$ and $X \cup Y_{0}$ is independent.

Proof: (i) Let $X=\left\{x_{i}\right\}, i<\lambda=\operatorname{card}(X)$, and $Y=\left\{y_{i}\right\}, i<\mu=\operatorname{card}(Y)$. We will define y_{i}^{\prime} and $X_{i}=\left\{x_{j} \mid i \leqslant j<\lambda\right\} \cup\left\{y_{j}^{\prime} \mid j<i\right\}$, such that $\operatorname{cl}\left(X_{i}\right)=\operatorname{cl}(X)$ for all $i \leqslant \lambda$. Note that $X_{0}=X$ and $X_{\lambda} \subseteq Y$, so that $\operatorname{cl}\left(X_{0}\right)=\operatorname{cl}(X)$ and X_{0} is independent.

Assume $\operatorname{cl}\left(X_{i}\right)=\operatorname{cl}(X)$ and X_{i} is independent. There is some $y \in Y-$ $\operatorname{cl}\left(X_{i}-\left\{x_{i}\right\}\right)$, otherwise $Y \subseteq \operatorname{cl}\left(X_{i}-\left\{x_{i}\right\}\right)$ and therefore $x_{i} \in \operatorname{cl}(Y) \subseteq \operatorname{cl}\left(X_{i}-\right.$ $\left.\left\{x_{i}\right\}\right)$ contradicting the independence of X_{i}. Let y_{i}^{\prime} be the first such y in the enumeration y_{j} of Y. Then $x_{i} \in \operatorname{cl}\left(\left(X_{i}-\left\{x_{i}\right\}\right) \cup\left\{y_{i}\right\}\right)=\operatorname{cl}\left(X_{i+1}\right)$ by Proposition 2. Therefore, $\operatorname{cl}\left(X_{i+1}\right)=\operatorname{cl}\left(X_{i}\right)=\operatorname{cl}(X)$. $y_{i}^{\prime} \in \operatorname{cl}\left(X_{i+1}-\left\{y_{i}\right\}\right)$ by construction of X_{i+1}. Suppose $x \in \operatorname{cl}\left(X_{i+1}-\{x\}\right)$ for some other $x \in X_{i+1}$. Then $x \notin$ $\operatorname{cl}\left(X_{i+1}-\left\{x, y_{i}^{\prime}\right\}\right)$, since $X_{i+1}-\left\{y_{i}^{\prime}\right\} \subseteq X_{i}$, which is independent; and subsets of independent sets are independent. Since $y_{i}^{\prime} \in M(A)$ we can apply Proposition 2 again and get $y_{i}^{\prime} \in \operatorname{cl}\left(X_{i+1}-\left\{y_{i}\right\}\right)$ which we just saw can not be. We have proved that X_{i+1} is independent and $\operatorname{cl}\left(X_{i+1}\right)=\operatorname{cl}(X)$. Obviously, X_{δ} is independent and $\mathrm{cl}\left(X_{\delta}\right)=\mathrm{cl}(X)$ for any limit ordinal δ if the same is true for all its predecessors. The y_{i}^{\prime} are distinct, so (i) is proved.
(ii) Let $Y=\left\{y_{i}\right\}, i<\mu=\operatorname{card}(Y)$. Define $Y_{0}=\left\{y_{i} \mid y_{i} \notin \operatorname{cl}\left(X \cup\left\{y_{j} \mid j<\right.\right.\right.$ $i\})\}$. By construction and Proposition 1 (iii), $\operatorname{cl}\left(X \cup Y_{0}\right)=\operatorname{cl}(Y)$. Suppose $y_{j} \in Y_{0}$ and $y_{j} \in \operatorname{cl}\left(X \cup Y_{0}-\left\{y_{j}\right\}\right)$. Then $y \in \operatorname{cl}\left(Y_{1}\right)$ where Y_{1} is finite, $y \notin Y_{2}$ for any proper subset Y_{2} of Y_{1}, and $Y_{1} \subseteq X \cup Y-\left\{y_{j}\right\}$. Let i be the largest ordinal such that $y_{i} \in Y_{1}$. Then $i>j$, since $y_{j} \in Y_{0}$. But again we apply Proposition 2 and get $y_{i} \in \operatorname{cl}\left(\left(Y_{1}-\left\{y_{i}\right\}\right) \cup\left\{y_{j}\right\}\right)$ which contradicts $y_{i} \in Y_{0}$.

Definition 4. Let $Y=\operatorname{cl}(X), X \subseteq M(A)$. The dimension of Y, written $\operatorname{dim}(Y)$, is the number of elements in any independent set $Y_{0} \subseteq M(A)$ such that $\operatorname{cl}\left(Y_{0}\right)=Y$. Such a Y_{0} is called a basis for Y.

Corollary 1. (i) $\operatorname{dim}(Y)$ is well defined.
(ii) If $X_{1} \subseteq M(A), X_{2} \subseteq M(A)$ and $\operatorname{cl}\left(X_{1}\right) \subset \operatorname{cl}\left(X_{2}\right)$ with $\operatorname{cl}\left(X_{1}\right) \neq \operatorname{cl}\left(X_{2}\right)$, then $\operatorname{dim}\left(\operatorname{cl}\left(X_{2}\right)\right) \geqslant \operatorname{dim}\left(\operatorname{cl}\left(X_{1}\right)\right)+1$.

This corollary is proved by the same arguments used in proving the corresponding results in linear algebra. We now proceed to some results concerning elementary monomorphisms. We first note that any elementary monomorphism
carries independent sets into independent sets.
Proposition 3. If $f: X \rightarrow|B|, X \subseteq|A|$, is an elementary monomorphism, then f can be extended to an elementary monomorphism $f: \operatorname{cl}(X) \rightarrow|B|$ whose range is $\operatorname{cl}(f[X])$.

Proof: $\left(A, x_{i}\right) \equiv\left(B, f\left(x_{i}\right)\right)$ since f is an elementary monomorphism. Note that $\operatorname{cl}(X)=\operatorname{cl}(\emptyset)$ in $\left(A, x_{i}\right)$. Let $\psi_{j}, j<\alpha$, be an enumeration of one representative of each atom $[\psi]$ such that $\psi^{\left(A, x_{i}\right)}$ is finite. Then $\operatorname{cl}(X)=\operatorname{cl}(\emptyset)=$ $\bigcup_{j<\alpha} \psi_{j}^{\left(A, x_{i}\right)}$. Let $y_{i}, i<\beta$ be an enumeration of $\operatorname{cl}(\emptyset)-X$ such that $n<j$, $y_{n} \in \psi_{k}^{\left(A, x_{i}\right)}$ and $y_{j} \in \psi_{m}^{\left(A, x_{i}\right)}$, together imply $k \leqslant m$. Let $f\left(y_{0}\right)$ be any element of $\psi_{0}^{\left(B, f\left(x_{i}\right)\right)}$. Now $\left(A, x_{i}, y_{0}\right) \equiv\left(A, f\left(x_{i}\right), f\left(y_{0}\right)\right)$. Replacing X by $X \cup\left\{y_{0}\right\}$, etc., we get $\left(A, x_{i}, y_{i}\right) \equiv\left(A, f\left(x_{i}\right), f\left(y_{i}\right)\right)$ which says that the f is an elementary monomorphism with domain $\operatorname{cl}(X)$. Obviously the range of f is $\operatorname{cl}(f[X])$.

Theorem 2. If ϕ^{A} is strongly minimal in A, ϕ^{B} is strongly minimal, X and Y are independent, $X \subseteq \phi^{A}, Y \subseteq \phi^{B}$ and $f: X \rightarrow Y$ is one-one, then f is an elementary monomorphism.

Proof: If ψ^{C} is a minimal set then every $c \in \psi^{C}-\mathrm{cl}(\emptyset)$ realizes the same ultrafilter in $B^{1}(T)$; if ψ^{C} is strongly minimal, then every $c \in \psi^{C}-\operatorname{cl}(Z)$ realizes the same ultrafilter in $B^{1}\left(\operatorname{th}\left(C, z_{i}\right)\right)$. Let x_{i} be an enumeration of X. Since ϕ^{A} and ϕ^{B} are strongly minimal and X and Y are independent, $\left(A, x_{0}\right) \equiv\left(B, f\left(x_{0}\right)\right)$ since $x_{0} \in \phi^{A}-\operatorname{cl}(\emptyset)$ and $y_{0} \in \phi^{B}-\operatorname{cl}(\emptyset)$. Also if $\left(A, x_{i}\right)_{i<\alpha} \equiv\left(B, f\left(x_{i}\right)\right)_{i<\alpha}$ for $\alpha<$ $\operatorname{card}(X)$, then $\left(A, x_{i}\right)_{i<\alpha+1} \equiv\left(B, f\left(x_{i}\right)\right)_{i<\alpha+1}$; if $\left(A, x_{i}\right)_{i<\alpha} \equiv\left(B, f\left(x_{i}\right)\right)_{i<\alpha}$ for every $\alpha<\beta$, β a limit ordinal, then $\left(A, x_{i}\right)_{i<\beta} \equiv\left(B, f\left(x_{i}\right)\right)_{i<\beta}$. Therefore, by induction, $\left(A, x_{i}\right)_{i<\operatorname{card}(X)} \equiv\left(A, f\left(x_{i}\right)\right)_{i<\operatorname{card}(X)}$.

Definition 5. $X \subseteq|A|$ is indiscernible if every one-one $f \in X^{X}$ is an elementary monomorphism.

Corollary 2. If ϕ^{A} is strongly minimal, $X \subseteq \phi^{A}$, and X is independent, then X is indiscernible.

Definition 6. A is properly imbeddable in B, written $A<B$ if there is an elementary monomorphism mapping $|A|$ properly into $|B|$.

Note that $<$ is transitive.
Theorem 3. Let T be such that the domain of every model is strongly minimal. Then
(i) T is ω_{1}-categorical.
(ii) If T is not ω_{0}-categorical it has ω denumerable models $A_{i}, i<\omega+1$ such that every denumerable model is isomorphic to exactly one of them and $i<j$ implies $A_{i}<A_{j}$.
(iii) $A<A$ iff $\operatorname{dim}(|A|)$ is infinite.

Proof: (i) Let $\operatorname{card}(A)=\operatorname{card}(B)=\omega_{1}$. Choose bases X and Y for $|A|$ and $|B|$ respectively. As noted earlier, $\operatorname{card}(X)=\operatorname{card}(Y)=\omega_{1}$. Choose any one-one correspondence f between them and apply Theorem 2 and Proposition 3.
(ii) As above, if $\operatorname{dim}(|A|)=\operatorname{dim}(|B|), A$ and B are isomorphic. If A is denumerable, $\operatorname{dim}(|A|) \leqslant \omega$. If $X \subseteq|C|$ and $\operatorname{cl}(X)=X$, then X is a model of T iff X is infinite. For, by the assumptions made about T at the beginning of this chapter, X must be infinite to be a model of T. If X is infinite and $\operatorname{cl}(X)=X$, then $\phi^{C}\left(v_{0}, x_{1}, \ldots, x_{n}\right)$ is either finite or cofinite in $|C|$. If it is finite, it is in $\operatorname{cl}(X)=X$; if it is cofinite in $|C|$ it intersects X. Thus $X \prec C$ (see [6]), and is therefore a model of T. Let $\operatorname{card}(C)=\omega_{1}$. Choose $X=\left\{x_{i}\right\}, i<\omega, X \subseteq|C|$, with X independent. Let k be the least ordinal such that $\operatorname{cl}\left(\left\{x_{i} \mid i<k\right\}\right)$ is infinite. If $k=\omega_{0}, T$ is ω_{0}-categorical. If $k<\omega$ let $A_{j}=\operatorname{cl}\left(\left\{x_{i} \mid i<k+j\right\}\right)$ for $j<\omega+1$. By Theorem 2 and Proposition 3 if $i<j, A_{i}<A_{j}$.
(iii) If $\operatorname{dim}(|A|)$ is infinite, choose a basis X for $|A|$ and a one-one but not onto $f \in X^{X}$, and then apply Theorem 2 and Proposition 3. If $\operatorname{dim}(|A|)$ is finite then not $A<A$, by Corollary 1 (ii).

Chapter II

In this chapter we assume that T is a complete theory in a denumerable language which is ω_{1}-categorical. A, B and C are models of T.
A is a prime model for T if for every model B there is an elementary monomorphism of A into B. A is a saturated model if for every subset $X \subseteq|A|$ with $\operatorname{card}(X)<\operatorname{card}(|A|)$ every ultrafilter of $B^{1}\left(\operatorname{th}\left(\left(A, x_{i}\right)\right)\right)$ is realized in $\left(A, x_{i}\right)$. Vaught showed in [7] that every T satisfying the assumptions which we made above has $P_{n}(T)$ denumerable for each n and therefore T has a denumerable saturated model and a prime model, both of which are unique up to isomorphisms; the prime model A is atomic and realizes no non-principle ultrafilter in any $B^{n}(T)$ and it has no proper elementary substructures, i.e., $A^{\prime} \prec A$ implies $A^{\prime}=A$.

In [21 Morley defines B to be a prime extension of A if $A \prec B, A \neq B$ and for any C such that $A \prec C$, there is an elementary monomorphism of B into C which is the identity on A. Using Vaught's Two Cardinal Theorem, Morley observed that if $A \prec B, A \neq B$, then $\phi^{B}-\phi^{A} \neq \emptyset$ for models A and B of an ω_{1}-categorical T. He then proved that T is ω_{1}-categorical iff every denumerable model has a prime extension, and that if T is ω_{1}-categorical every such prime extension is minimal and any two prime extensions of the same model are isomorphic. Using these results, he has shown (oral communication) that an ω_{1}-categorical theory has at most ω denumerable models.

In [3] he showed that if T is categorical in one uncountable power it is in all, and every uncountable model is saturated. The proof of Theorem 5.4 in [3] also proves the following theorem, as Professor Morley pointed out to the author: If T is ω_{1}-categorical and some filter in $B^{1}(T)$ is not realized in A, then there is no infinite indiscernible subset of $|A|$.

Theorem 4. Let T be ω_{1} - but not ω_{0}-categorical, with $B^{1}(T)$ infinite and $\phi \in L(T)$ defining a strongly minimal set. Then every denumerable model of T is isomorphic to exactly one of an $\omega+1$ sequence $A_{0}<A_{1}<A_{2}<\ldots<A_{\omega}$ of models of T.

Proof: Let A_{0} be a prime model of T. We assert that $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{A_{0}}\right)\right)=k<\omega$, for some k. For if not, any basis would be an infinite indiscernible subset of $\left|A_{0}\right|$, and since $B^{1}(T)$ is infinite it has a non-principle ultrafilter, which is not realized in A_{0}, because A_{0} is prime; this would contradict the last theorem of Morley mentioned above.

Let A_{i} be a prime extension of A_{i-1} for $0<i<\omega$ and let $A_{\omega}=\bigcup_{i<\omega} A_{i}$. For $i<j \leqslant \omega, \phi^{A_{j}}-\phi^{A_{i}} \neq \emptyset$, and so by Corollary 1 (ii) $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{A_{i}}\right)\right) \geqslant k+1$, for $i \leqslant \omega$. Thus $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{A_{\omega}}\right)\right)=\omega$, and we contend that equality holds for
$i<\omega$ also. Let $X=\left\{x_{i}\right\}_{i<\omega}$ be an independent subset of $\phi^{A_{\omega}}$ such that $x_{i+k} \in$ $\phi^{A_{i+1}}$ for all $i<\omega$, and $x_{0}, \ldots, x_{k-1} \in \phi^{A_{0}}$. The structure $A_{0}^{\prime}=\left(A_{0}, x_{i}\right)_{i<k}$ contains a prime model of its theory T_{0}^{\prime}, and since A_{0} is minimal as a prime model of T, A_{0}^{\prime} is a prime model for T_{0}^{\prime}. Let T_{j}^{\prime} be the theory of the structure $A_{j}^{\prime}=$ $\left(A_{j}, x_{i}\right)_{i<k+j}$ for $j<\omega$. A_{j}^{\prime} is a prime model for T_{j}^{\prime} for $j<\omega$, for otherwise, let i be the smallest number such that A_{i+1}^{\prime} is not a prime model of T_{i+1}^{\prime}. Let $B_{i+1}^{\prime} \prec A_{i+1}^{\prime}$, with $B_{i+1}^{\prime}=\left(B_{i+1}, x_{0}, \ldots, x_{k+1}\right)$, be a prime model for T_{i+1}^{\prime}. Then $\left(B_{i+1}, x_{0}, \ldots, x_{k+i-1}\right)$ is a model of T_{i}^{\prime} and contains a prime model B_{i}^{\prime} of T_{i}^{\prime}, which is therefore isomorphic to A_{i}^{\prime}. $x_{k+1} \in\left|B_{i+1}\right|-\left|B_{i}\right|$. Thus B_{i+1} is a proper elementary extension of $B_{i} \cong A_{i}$. Therefore A_{i+1} can be imbedded in B_{i+1} by an elementary monomorphism f which takes A_{i} onto B_{i}; we thus have $f\left(A_{i}\right) \prec f\left(A_{i+1}\right) \prec B_{i+1} \prec A_{i+1}$. But then $\phi^{f\left(A_{i+1}\right)} \subseteq \phi^{B_{i+1}} \subseteq \phi^{A_{i+1}}$ and $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{f\left(A_{i+1}\right)}\right)\right)=\operatorname{dim}\left(\operatorname{cl}\left(\phi^{A_{i+1}}\right)\right)$, since they are isomorphic. Therefore $\phi^{f\left(A_{i+1}\right)}=\phi^{B_{i+1}}=\phi^{A_{i+1}}$, and $B_{i+1}=A_{i+1}$, which proves that A_{i+1}^{\prime} is a prime model of T_{i+1}^{\prime}. As a prime model of $T_{j}^{\prime}, A_{j}^{\prime}$ is atomic and $\phi^{A_{j}}$ is a union of atoms. $\operatorname{cl}\left(\phi^{A_{0}}\right)=\operatorname{cl}\left(\left\{x_{0}, \ldots, x_{k-1}\right\}\right)$ because $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{A_{0}}\right)\right)=k$, so every atom in $\phi^{A_{0}}$, and therefore in $\phi^{A_{j}^{\prime}}$ is finite. Thus $\operatorname{cl}\left(\phi^{A_{j}^{\prime}}\right)=\operatorname{cl}(\emptyset)$ in A_{j}^{\prime}. Therefore $\operatorname{cl}\left(\phi^{A_{j}}\right)=\operatorname{cl}\left(\left\{x_{0}, \ldots, x_{k+j-1}\right\}\right)$, and $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{A_{j}}\right)\right)=k+j$. Thus all the A_{i}, $i \leqslant \omega$ are distinct.

If B is a denumerable model of T with $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{B}\right)\right)=k+j$ for some $0 \leqslant j<\omega$, then $B^{\prime}=\left(B, b_{0}, \ldots, b_{k+j-1}\right)$ is a model of T_{j}^{\prime} and since we have $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{B}\right)\right)=k+j, B^{\prime}$ is in fact a prime model of T_{j}^{\prime}. Therefore $B^{\prime} \cong A_{j}^{\prime}$ and therefore $B \cong A_{j}$.

Finally, if B is a denumerable model of T with $\operatorname{dim}\left(\operatorname{cl}\left(\phi^{B}\right)\right)=\omega$, let $\left\{y_{i}\right\}$, $i<\omega$, be a basis for ϕ^{B} with $y_{i} \in \phi^{B}$ for all $i<\omega . B_{j}^{\prime}=\left(B, y_{i}\right)_{i<j+k}$ is a model of T_{j}^{\prime} and contains a prime model $C_{j}^{\prime}=\left(C_{j}, y_{i}\right)_{i<j+k}$; thus $C_{j}^{\prime} \cong A_{j}^{\prime}$ and $C_{j} \cong A_{j}$. Let $C_{\omega}=\bigcup_{i<\omega} C_{i}$. Then $y_{i} \in\left|C_{\omega}\right|$ for all $i<\omega$, and since the y_{i} are a basis, $\phi^{C_{\omega}}=\phi^{B}$. Since $C_{\omega} \prec B$, we have $C_{\omega}=B$ by Morley's use of the Vaught Two Cardinal Theorem. Thus any denumerable model B with $\operatorname{dim}\left(\phi^{B}\right)=\omega$ is isomorphic to A_{ω}. Since the denumerable saturated model of T must be such, A_{ω} is saturated. Morley had observed that A_{ω} is saturated (oral communication). This completes the proof of Theorem 4.

Finally we wish to prove a result about denumerable saturated models of arbitrary ω_{1} - but not ω-categorical theories which is complementary to Vaught's result that prime models of such theories are minimal. We first prove that by adding a finite number of constants to a general ω_{1} - but not ω-categorical theory we can get a theory which satisfies the hypothesis of Theorem 4. It follows immediately from the Ryll-Nardzewski Theorem (see [7] p. 303) that if T is not ω-categorical then
by extending T to T^{\prime} by adding some finite set of constants we can make $B^{1}\left(T^{\prime}\right)$ infinite.

It is easy to see that if every model A of T with $\operatorname{card}(|A|))=\omega_{1}$ is saturated, so is every model B of $\operatorname{th}\left(\left(A, x_{i}\right)_{i<\lambda}\right)$ for any $\left\{x_{i}\right\} \subseteq|A|$ with $\lambda<\omega_{1}$. Using this fact we can see that by adding a finite number of constants to an ω_{1}-categorical T, we can define a strongly minimal set. For, if we suppose the contrary, we can partition any infinite set S (of which there must be at least one) into infinite sets S_{1}^{1} and S_{2}^{1} by adding a finite set F_{1} of constants; given $S_{1}^{n}, S_{2}^{n}, \ldots, S_{2^{n}}^{n}$, we can partition each into a pair of infinite sets, using some finite set F_{n} of constants. The theory T^{\prime} obtained by adding the constants $\bigcup_{i<\omega} F_{i}$ to T will be ω_{1}-categorical if T is, by the previous remark, but $P^{1}\left(T^{\prime}\right)$ will be uncountable, which contradicts the result in [7] mentioned at the beginning of this chapter.

Now let T be ω_{1} - but not ω-categorical and let T^{\prime} be an extension by a finite set $c_{i}, i<n$, of constants which satisfies the hypothesis of Theorem 4. Let B be a denumerable saturated model of T. Then B contains an n-tuple $\left\langle b_{0}, \ldots, b_{n-1}\right\rangle$ of the type used in extending T to T^{\prime}, and $\left(B, b_{0}, \ldots, b_{n-1}\right)=B^{\prime}$ is a model of T^{\prime}. If $B \prec C$, with $\operatorname{card}(|C|)=\omega$, then $\left(B, b_{0}, \ldots, b_{n-1}\right) \prec\left(C, b_{0}, \ldots, b_{n-1}\right)=C^{\prime}$. The dimension of the closure of the strongly minimal set $\phi^{B^{\prime}}$ is infinite, therefore so is the dimension of the closure of $\phi^{C^{\prime}}$. Thus C^{\prime} is saturated as a model of T^{\prime}, and C, being a reduct of a saturated model is saturated (see [4] p. 50). We have proved

Theorem 5. If T is ω_{1} - but not ω-categorical, B is a denumerable saturated model of T, and $B \prec C$ with $\operatorname{card}(|C|)=\omega$, then C is saturated.

BIBLIOGRAPHY

[1] J. Loś, "On the categoricity in power of elementary systems and some related problems", Colloquium Mathematicum 3 (1954), 58-62.
[2] M. Morley, "A condition equivalent to categoricity in uncountable powers", Notices of the American Mathematical Society 11 (1964), p. 687.
[3] , "Categoricity in power", Transactions of the American Mathematical Society 114 (1965), 514-538.
[21] M. Morley and R. Vaught, "Homogeneous universal systems", Mathematica Scandinavia 11 (1962), 37-57.
[5] D. Park, Set theoretic constructions in model theory, Doctoral Dissertation, M.I.T., 1964, unpublished.
[6] A. Tarski and R. Vaught, "Arithmetical extensions of relational systems", Compositio Mathematica 13 (1957), 81-102.
[7] R. Vaught, "Denumerable models of complete theories", Proceedings of the Symposium on Foundations of Mathematics: Infinitistic Methods, Pergamon Press, New York, 1961, pp. 303-321.
[8] ——, "Models of complete theories", Bulletin of the American Mathematical Society 69 (1963), 299-313.

