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ABSTRACT

By generalizing to model theory notions connected with dimension, it is shown
that certain theories categorical in uncountable powers have countably many de-
numerable isomorphism types which are arranged iwap 1 sequence under
the ordering of the possibility of elementary imbedding. It is also shown that
any countable elementary extension of a denumerable saturated model of a theory
categorical in uncountable powers is saturated.

PREFACE

This thesis should be readable by anyone with a little background in logic;
an excellent place to get such a background is the expository paper [7] of R. L.
Vaught.

Professor Vaught pointed out an error in a preliminary version of this paper
and made several useful suggestions about how to proceed. Professor M. Morley
in letters and conversation was most helpful and, in particular, pointed out to me
a theorem which is implicit in [3] that turned out to be the key to applying the
results of Chapter 1 of this thesis to theories categorical ibut notw. | would
like to take this opportunity to thank both of these men.

| would like to thank my advisor, Professor Donald Kreider, who was more
than generous with his time and help.
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I ntroduction

The Skolem-lBwenheim Theorem says that ifiest order theory in a denumerable
language has anfimite model, it has at least one of everyimite cardinality. £ &

in [1] gave examples of theorids, T, andT; such thatl; was categorical for all
infinite cardinals;I; was categorical for all uncountable cardinals butmoand

T5 was categorical itv, but for no other infinite cardinals. Morley in [3] showed
that if a theory is categorical in one uncountable cardinal, it is categorical in all of
them. Morley gave in [2] a characterization of theories categorical in uncountable
powers and used it to prove (oral communication) that there are at most countably
many denumerable models of such a theory. The main results in this thesis are
that a certain class af; - but notw-categorical theories have infinitely many non-
isomorphic countable models and that an elementary extension of a countable
saturated model of an,-categorical theory is saturated.

Chapter 0 is notation and standard definitions. Chapter 1 consists of generaliz-
ing certain algebraic concepts to a class of first-order theories and concludes with
a generalization of the Steinitz Theorem. In Chapter 2 the methods of the preced-
ing chapter are combined with known results to prove the results mentioned in the
previous paragraph.

Vaught pointed out to the author that the notion of algebraic closure in Chapter
1 is identical to that of obligation in [5], where Park uses it to investigate inter-
section properties of models. This notion and that of strongly minimal set are
closely related to Morley’s algebraic points and points transcendental in rank one,
respectively (in [3]). The notion of strongly minimal set was known to Vaught.
He, and probably others, knew the Steinitz Theorem could be generalized, though
the exact form in Chapter 1 is perhaps new. To the author’s best knowledge the
formulation of the concept of dimension presented here is also new.



Chapter 0

An ordinal isidentified with the set of its predecessors. w = wy isthefirst infinite
ordinal and w, the first uncountable ordinal. If X isany set, card(.X) is the first
ordinal which can be put in one-one correspondence with X. An enumeration z;
of X isaone-one function from card(.X') onto X.

A similarity type 7 isafunction from an ordinal A into w.

A structure A = (| A|, R4);., of similarity type 7 € w” isaset |A| called the
domain of A and a 7(i)-ary relation R if 7(i) > 0, i < )\, and a distinguished
element a; = R € |A]if 7(i) = 0,7 < \.

L. for 7 € w isthe set of formulas of the first order language with equality
which has a 7(i)-ary predicate symbol R; for each 7(i) > 0, ¢ < A, and an
individual constant symbol ¢; = R; for each 7(i) = 0, ¢ < A. S; is the set of
sentences of L, and FY for j < w isthe set of formulas whose free variables are
among {vg, v1, ... ,vj_1} where vy, vy, ... arethevariablesusedin L, (S; =
F). A completetheory T'in L, isasubset of S, suchthat T+ ¢ implies¢ € T
and for every ¢ € S, either ¢ € T or —¢ € T, but not both.

If T is a complete theory in L, then ¢ ~ o iff T F Yy ... Yo,_1[¢p < ¥]is
an equivalence relation on F". The equivalence classes [¢] under ~ along with
the operations induced on them by A, Vv, and — are a Boolean agebra denoted by
B™(T'). P*(T) isthe set of ultrafiltersin B*(T"). L(T') iS L,.

If Aisof similarity typer and ¢ € F* — F*~! forn > 1, then ¢* isthe n-ary
relation on |A| determined by (ao, ... ,a, 1) € ¢?iff {(ag,... ,a, ;) satisfies
é(vo, ... ,vp_1) iN A; notethat ¢ ~ 1 iff p = * for models A of T'. For ¢ €
Fr— F L oM vg, ..o s vp_1,ag, ... ,a,-1) istheset of dl (ag, ... ,a;_1) such
that (ag, ... ,ar_1,ak, ... ,an_1) € ¢ {[¢] € BY(T)|[{ag,... ,an_1) € ¢} is
an ultrafilter in B"(7") and is said to be realized by (ao, ... ,a,—1) INA.th(A) is
the set of all ¢ € S; which aretruein A; L(A) is L(th(A)).

If Aisastructureof typer € w” and i1 < A, then the structure (| A, R;)i<,, IS
said to be the pi-reduct of A and A isan expansion of (|A|, R;)i<,. If X C |A| and
x; for i < card(X) isan enumeration of X, then (A, z;) isthe structure (| A|, S#)
of type o € w Mt @dX) where

. (1) ifi<A
o (i) :{ 0 ifA<i<A+cad(X)

and

) oz ifi= A4 < A+ cad(X).
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Notice that th(A) C th((A,z;)). If X = {ag,...,axfandz; = a; 0 < i < k
thenth((A, x;)) consists of al formulas obtained by substituting c,; for v; (when
free) in the formulas ¢ such that [¢] isin the ultrafilter realized by (aq, . .. , ax).
Thusthe elementsof P"(T") correspond to consistent complete extensions of 7" by
adding n new individual constants to the language L... We will generdly call L,
the language appropriate to (A, =;) and will suppress the ¢ and the enumeration;
if v, =a;,0 <i<k<wwewouldwrite (A, x;) as(A,ao,. .. ,a).

If A and B are structures then A is elementary equivalent to B, A = B, if
thA) = th(B). If X C |A|and f : X — |B| then f isan elementary monomor-
phismif (A, z;) = (B, f(x;)) for any enumeration x; of X. A isan elementary
substructure, A < B, of B if |A| C |B| and the identity map of |A| into |B| is
an elementary monomorphism. An isomorphism of A onto B is an elementary
monomorphism of |A| onto |B|. A theory T is A\-categorical if it has a model A
with card(| A|) = A and every two such are isomorphic.

We will use F¥lvg(v) to mean there exist exactly & v such that ¢(v), for any
k < w; Flzg(z) isan abbreviation for the formula

k k
Elvjl ijz s Elvjk [/\ ¢(Uji> A vvjk+1 <¢(Ujk+1) - \/ Ujpp1r = Uji)] J
1=1

=1

where the variables v;, are chosen to avoid clashes.



Chapter |

Throughout this chapter 7" is a complete theory in L, and L. is countable, i.e.,
T €w with A < w;. A, B, and C are always models of 7.

The definitions in this chapter are motivated and the theorems suggested by
the two following examples of theories which are w,- but not w-categorical.

Example 1. The theory of algebraically closed fields of characteristic 0. The
denumerable models of thistheory are algebraically closed fields whose degree of
transcendence over the rationalsis countable.

Example 2. The theory of torsion-free abelian quotient groups. These are
precisely the vector spaces over the rationals considered as groups, and the denu-
merable models are those whose dimension i issuch that 0 < ¢ < w.

Definition 1. Let X C |A|. Then the algebraic closure cl(X) of X isthe
union of all finite subsets of | A| definablein (A, x;) for x; an enumeration of X.
le, c(X) = U |4 = (A, z), T =th(A),[)] € B(T"), ¢ isfinite}. We
say X spansY if cl(X) =Y.

In Example 1 cl(()) = the algebraic numbers. In Example 2 cl(()) = the trivial
subgroup. We note that cl(.X) does not depend on the particular enumeration
of X used. Since L, is denumerable card(cl(X)) < max(card(X),w). Also if

A < B, d(X)in B isthe same as cl(X) in A, since if ¢Z(vy, x1,... ,x,) for
ry,...,1, € X isfinite of cardinality k, then 7" = F*lvé(cariy, - - -, Crgi,)s SO
¢a(vo, x1, ... ,x,) Must contain exactly k& elements also, and by the definition of

A < B, these must be the same. Finally, x € cl(X) impliesz € cl(X,) for some
finite X, C X.
Proposition 1. For any subsets X and Y of |A

(i) X Cc(X)
(i) if X C Y, thencl(X) C c(Y)
(iii) cl(cl(X)) = cl(X).

Proof:

(i) vo = )i definesthe unit set {z;}.

(ii) The language for (A, y;) contains formulas equivalent to any in the lan-
guage for (A, z;).

(iii) cl(X) C cl(cl(X)) by (i). To prove the inclusion the other way assume
a € c(cl(X)). l.e,, assumethat ai, ... ,a, € c(X), that $*(a,ai,... ,a,), and
that there are exactly k elementsy € | A| such that ¢ (y, ay, ... ,a,). Since each



a; € cl(X), a; isin afinite subset of A defined by some formulain L(th(A4, z;)).
Let %A be the smallest such set, for each j, 0 < j < n. Then [¢;] is an atom
in B'(th(A4,z;)) for each j, 0 < j < n. Also th(A,z;) F 3™l (v) for
some m; for each j, 0 < j < n. Since a, satisfies Flvp(v,ay,... ,a,), SO
does every element of ¢/ (vy). But then there are at most m,, - k elements of |A|
in ¢4 (vo, ay,. .. ,an_1) Where ¢o(vo, vy, ... ,v,_1) isthe formula Jv, 1), (v,) A
é(vo, ... ,v,)]. Continuing in this way we successively eliminate all of the a;’'s
and we havethat a € cl(X).

In terms of the algebraic closure of a set we can introduce other notions from
algebra, in particular, that of an algebral cally independent set.

Definition 2. X C |A] isindependent if for all x € X, z ¢ cl(X — {z}).

It follows from Proposition 1 (ii) that any subset of an independent set isinde-
pendent. Also any independent set is digjoint from cl ().

Definition 3. A set ¢ (and the formula ¢) is called minimal if ¢* isinfinite
and ¢ N 4 is either finite or cofinitein ¢ for every v € L(A). ¢ (and ¢) is
called strongly minimal if ¢ is minimal in any consistent extension of th(A) by
constants. Let M (A) denote the union of all strongly minimal subsets of |A.

Wenotein passing that if M/ (A) # 0, cl(0)) C M(A) since P strongly minimal
implies P U 1* is strongly minimal for any finite 4 C |A|.

Before proving the next proposition we wish to point out a consequence of the
Compactness Theorem: If y € |A| — cl(0), then there is a structure A’ such that
A < A’ and there are infinitely many elements b, € |A’|, i < w, such that each b;
realizes the ultrafilter in B'(T') realized by y.

Proposition 2. Let X C |A|,z € M(A),x ¢ cl(X)andy € cl(X U {z}) —
c(X). Thenz ¢ c(X U{y}).

Proof: Making use of the previous comment we can replace A by A’, if nec-
essary, so we will assume that the ultrafilter realized by y isrealized by infinitely
many elements of |A|. Also, sincecl(X) in Aisthesameascl(0) in (A, x;), itis
sufficient to prove the proposition for the case X = ().

Sincez € M(A), z € ¢ for some strongly minimal ¢;. Sincey € cl({z}),
thereisa ¢, € F? such that ¢4 (y, z) and there are exactly k a’sin |A| such that
¢4 (a,x) for some k < w. Let ¢y(vy) be the formula ¢y (ve) A (F¥1v1)de(v1, ).
Then z € ¢! C ¢ sothat ¢ iscofinitein ¢<, since z ¢ cl(()). Note that ¢
is strongly minimal. Let ¢)(vy) be the formula Jv; [¢g(v1) A Pa(vg, v1)]. Since
y € A, ¢4 isinfinite. Let v;(vy) be, for 0 < i < w, theformula (F1v;) (¢ (v1) A
¢2(vo, v1)]. Weclaimthat y € 7! for some j. If not, y € A, = ¥ — Uy, 07
Lety = ap and ag, a4, . .. , a, be elements which realize the same ultrafilter as y;
then ag, ay,... ,a, € A,. Let Py = {a|¢y (a) A ¢o(a,a;)} for 0 < i < k. Then
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by the construction of A,,, each P; isan infinite subset of ¢;'. But each element of
¢ isrelated to exactly k elements by ¢3!, so ﬂfzo P; = (). Therefore for some,
¢y — P; isinfinite, which contradicts the strong minimality of ¢¢'. Thusy € ¢,
Jj <w.Butthenz € cl({y}).

Theorem 1. Let X C M(A),Y C M(A), cl(X) C c(Y) and X bein-
dependent. Then (i) card(X) < card(Y) and (ii) thereisa Y, C Y such that
(X UYy) =cl(Y) and X U Y] isindependent.

Proof: (i) Let X = {z;},i < A =card(X),andY = {y;},i < p = card(Y').
Wewill definey; and X; = {z;]i <j < AU{y;|j < i}, suchthat cl(X;) = cl(X)
forall i < A. Notethat Xy = X and X, C Y, sothat cl(X,) = cl(X) and X is
independent.

Assume cl(X;) = cl(X) and X; is independent. Thereissomey € Y —
c(X; —{z;}), otherwise Y C cl(X; — {z;}) and therefore z;; € cl(Y") C cl(X; —
{z;}) contradicting the independence of X;. Let y; be the first such y in the
enumerationy; of Y. Thenz; € cl((X; —{z;})U{y;}) = cl(X;11) by Proposition
2. Therefore, cl(X;;1) = d(X;) = cl(X). v} € cl(Xi41 — {v:}) by construction
of X;11. Suppose =z € cl(X;;1 — {z}) for some other z € X;.;. Thenx ¢
(X1 —{z,y}}), since X; 11 —{y;} C X,, whichisindependent; and subsets of
independent sets are independent. Sincey, € M (A) we can apply Proposition 2
againand get v/ € cl(X;.1 — {v;}) which wejust saw can not be. We have proved
that X, isindependent and cl (X, ) = cl(X). Obviously, X, isindependent and
cl(Xs) = cl(X) for any limit ordinal ¢ if the same istrue for all its predecessors.
The y; are distinct, so (i) is proved.

(i) LetY = {y;}, 1 < p = card(Y). Define Yy = {ysly: ¢ cl(X U {y;lj <
i})}. By construction and Proposition 1 (iii), cl(X U Yy) = cl(Y). Suppose
y; € Yoandy; € (X UYy — {y;}). Theny € cl(Y;) whereY; isfinite, y ¢ Y5
for any proper subset Y of Y7, andY; € XUY —{y,}. Leti bethelargest ordinal
suchthat y; € Y;. Theni > j, sincey; € Y;. But again we apply Proposition 2
and get y; € cl((Yh — {v:}) U {y;}) which contradicts y; € Y5.

Definition 4. Let Y = cl(X), X C M(A). The dimension of Y, written
dim(Y"), is the number of elementsin any independent set Y, C M (A) such that
c(Yy) =Y. SuchaY, iscaled abasisfor Y.

Corollary 1. (i) dim(Y") iswell defined.

(i) If X; C M(A), Xo € M(A)andcl(X;) C cl(Xy) withcl(X;) # cl(Xa),
then dim(cl(X3)) > dim(cl(X7)) + 1.

This corollary is proved by the same arguments used in proving the corre-
sponding results in linear algebra. We now proceed to some results concerning
elementary monomorphisms. We first note that any elementary monomorphism
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carries independent sets into independent sets.

Proposition 3. If f : X — |B|, X C |A|, isan elementary monomorphism,
then f can be extended to an elementary monomorphism f : cl(X) — |B| whose
rangeiscl(f[X]).

Proof: (A,z;) = (B, f(z;)) since f is an elementary monomorphism. Note
that cl(X) = cl(0) in (A, z;). Letvy;, j < «, be an enumeration of one rep-
resentative of each atom [¢/] such that )(4*) is finite. Then cl(X) = cl(0) =
Ujco ¥, Lety;, i < 3 be an enumeration of cl(®) — X such that n < j,

J
(Az; A,z

Yn € Yy ) and y; € wfn ), together imply &£ < m. Let f(yo) be any element
of YSP7") Now (A, zi,y0) = (A, f(x), f(y0)). Replacing X by X U {yo},
etc., weget (A, z;,v;) = (A, f(x;), f(y;)) which saysthat the f is an elementary
monomorphism with domain cl(.X'). Obviously the range of f iscl(f[X]).

Theorem 2. If ¢# is strongly minimal in A, ¢ is strongly minimal, X and
Y areindependent, X C ¢4, Y C ¢Pand f : X — Y isone-one, then f isan
elementary monomorphism.

Proof: If ¢/ isaminimal set then every ¢ € ¢® —cl(() realizesthe same ultra-
filter in BL(T); if 1/“ is strongly minimal, then every ¢ € ¥ — cl(Z) redizesthe
same ultrafilter in BY(th(C, 2;)). Let x; be an enumeration of X. Since ¢* and ¢*
are strongly minimal and X and Y are independent, (A, zy) = (B, f(zo)) since
19 € ¢ — (D) and yo € ¢8 —cl(0). AlsOif (A, 2;)ica = (B, f(2i))ica for a <
card(X), then (A, z;)icat1 = (B, f(2:))icat1; 1T (A, 2:)ica = (B, f(x;))icq fOr
every a < 3, # alimit ordinal, then (A, z;);<s = (B, f(2:))i<s. Therefore, by
induction, (A, z;)i<cadx) = (4, f(@:))i<cad(x)-

Definition 5. X C |A| isindiscernible if every one-one f € X¥ isan ele-
mentary monomorphism.

Corollary 2. If 4 isstrongly minimal, X C ¢4, and X isindependent, then
X isindiscernible.

Definition 6. A is properly imbeddable in B, written A < B if there is an
elementary monomorphism mapping | A| properly into | B|.

Note that < istransitive.

Theorem 3. Let T be such that the domain of every model isstrongly minimal.
Then

(i) T isw;-categorical.

(i) If T isnot wy-categorical it hasw denumerable models A;, i < w + 1 such
that every denumerable model is isomorphic to exactly one of them and i < j
implies A; < A;.

(iii) A < Aiff dim(|A]) isinfinite.



Proof: (i) Let card(A) = card(B) = w,. Choose bases X and Y for |A| and
| B| respectively. Asnoted earlier, card(X) = card(Y') = w;. Choose any one-one
correspondence f between them and apply Theorem 2 and Proposition 3.

(i) As above, if dim(|A|) = dim(|B|), A and B are isomorphic. If A is
denumerable, dim(|A|) < w. If X C |C| and cl(X) = X, then X isamodel of
T iff X isinfinite. For, by the assumptions made about 7" at the beginning of this
chapter, X must be infinite to be amodel of 7'. If X isinfiniteand cl(X) = X,
then ¢“(vg, z1, ... ,x,) is either finite or cofinite in |C|. If it is finite, it isin
c(X) = X;ifitiscofinitein |C] it intersects X. Thus X < C (see[6]), and is
therefore amodel of 7. Let card(C') = w;y. Choose X = {x;},i < w, X C |C],
with X independent. Let k be the least ordinal such that cl ({z;|i < k}) isinfinite.
If k = wo, T iswy-categorical. If k < wlet A; = cl({z;|i < k+j})forj <w+1.
By Theorem 2 and Proposition 3if ¢ < j, A; < A;.

(iii) If dim(|A]) isinfinite, choose abasis X for | A| and a one-one but not onto
f € X*, and then apply Theorem 2 and Proposition 3. If dim(|A|) isfinite then
not A < A, by Corollary 1 (ii).

10



Chapter |1

In this chapter we assume that 7" is a complete theory in a denumerable language
which isw;-categorical. A, B and C' are models of 7.

Alisaprimemodel for 7' if for every model B thereisan elementary monomor-
phism of A into B. A is a saturated model if for every subset X C |A| with
card(X) < card(|A|) every ultréfilter of B'(th((A,xz;))) isrealized in (A, z;).
Vaught showed in [7] that every T satisfying the assumptions which we made
above has P, (T") denumerable for each n and therefore 7" has a denumerabl e sat-
urated model and a prime model, both of which are unique up to isomorphisms;
the prime model A isatomic and realizes no non-principle ultrafilter inany B™(7T')
and it has no proper elementary substructures, i.e., A’ < Aimplies A’ = A.

In[21 Morley defines B tobeaprimeextensionof Aif A < B, A # B andfor
any C' suchthat A < C, thereis an elementary monomorphism of B into C' which
istheidentity on A. Using Vaught's Two Cardinal Theorem, Morley observed that
if A< B, A+ B,then ¢® — ¢ +# () for models A and B of an w,-categorical 7.
He then proved that 7" is w;-categorical iff every denumerable model has a prime
extension, and that if 7" is w-categorical every such prime extension is minimal
and any two prime extensions of the same model are isomorphic. Using these
results, he has shown (ora communication) that an w;-categorical theory has at
most w denumerable models.

In [3] he showed that if 7" is categorical in one uncountable power itisin al,
and every uncountable model is saturated. The proof of Theorem 5.4 in [3] aso
proves the following theorem, as Professor Morley pointed out to the author: If
T isw;-categorical and somefilter in B*(T') isnot realized in A, then thereis no
infinite indiscernible subset of | A|.

Theorem 4. Let T' be w;- but not wy-categorical, with B'(T') infinite and
¢ € L(T) defining a strongly minimal set. Then every denumerable model of T’
isisomorphic to exactly oneof anw + 1 sequence Ay < A1 < Ay < ... < A, of
models of 7.

Proof: Let A, be aprime model of 7. We assert that dim(cl(¢?°)) = k < w,
for some k. For if not, any basis would be an infinite indiscernible subset of | A|,
and since B(T)) isinfinite it has a non-principle ultrafilter, which is not realized
in Ay, because A, is prime; this would contradict the last theorem of Morley
mentioned above.

Let A; be aprime extensionof A;,_; for0 < i <wandlet A, = (J,_, A
Fori < j < w, ¢ — ¢4 # (), and so by Corollary 1 (i) dim(cl(¢4)) > k + 1,
for i < w. Thus dim(cl(¢?+)) = w, and we contend that equality holds for
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i < waso. Let X = {x;};., be an independent subset of ¢~ such that z;;, €
¢+t foradl i < w, and @, ..., 751 € ¢ 0. The structure A) = (Ag, 7;)i<k
contains a prime model of itstheory 77, and since A, isminimal as a prime model
of T, Ay is aprime model for 7j. Let T} be the theory of the structure A’ =
(Aj, zi)ickyy for j < w. A’ isaprime model for 77 for j < w, for otherwise,
let i be the smallest number such that A;_ , is not a prime model of 77 ,. Let
B, < A, with B, = (Bj;1,%0,...,%r1), be aprime model for 77, ;.
Then (B4, zo, - .. ,xr+—1) iISamodel of 7! and contains a prime model B; of
T!, which is therefore isomorphic to A,. xy.1 € |Biy1| — |Bs|- Thus By, is
a proper elementary extension of B; = A;. Therefore A;,; can be imbedded
in B;;; by an elementary monomorphism f which takes A; onto B;; we thus
have f(A;) < f(Aip1) < Biy1 < Aipq. But then ¢f(Ai) C gBist C gpAin
and dim(cl(¢f“+1)) = dim(cl(¢?+1)), since they are isomorphic. Therefore
oI Air) = ¢Birt = ¢Aini and B;y; = A1, Which provesthat A, , isaprime
model of 77, ,. As a prime model of T}, A/ is atomic and ¢/ is a union of
atoms. cl(¢?°) = cl({zo,... ,zr_1}) because dim(cl(¢*?)) = k, so every atom
in ¢, and therefore in ¢ is finite. Thus cl(¢?/) = cl(0) in A. Therefore
c(p) = c({xo,... ,2rj-1}), and dim(cl(¢?)) = k + j. Thusal the A;,
i < w aredistinct.

If B is a denumerable model of 7" with dim(cl(¢?)) = k + j for some
0<j<w,thenB = (B,by,...,bgy; 1) isamodel of 77 and since we have
dim(cl(¢”)) = k + j, B’ isin fact a prime model of 7. Therefore B’ = A’ and
therefore B = A;.

Finally, if B is a denumerable model of 7" with dim(cl(¢?)) = w, let {y;},
i < w, beabassfor ¢” withy; € ¢P fordl i < w. B} = (B,y;)icj+k iSa
model of T/ and contains a prime model C} = (Cj,y;)i<jr; thus Cf = A% and
C; = A Let C, = U, Ci. Theny; € |C,| foral i < w, and sincethey; are a
basis, %~ = ¢®. Since C,, < B, wehave C,, = B by Morley’s use of the Vaught
Two Cardinal Theorem. Thus any denumerable model B with dim(¢?) = w is
isomorphic to A,,. Since the denumerable saturated model of 7" must be such, A,
issaturated. Morley had observed that A, issaturated (oral communication). This
completes the proof of Theorem 4.

Finally we wish to prove aresult about denumerable saturated models of arbi-
trary w; - but not w-categorical theorieswhich is complementary to Vaught'sresult
that prime models of such theories are minimal. We first prove that by adding a
finite number of constantsto ageneral w;- but not w-categorical theory we can get
atheory which satisfies the hypothesis of Theorem 4. It followsimmediately from
the Ryll-Nardzewski Theorem (see [7] p. 303) that if 7" is not w-categorical then
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by extending T to T" by adding some finite set of constants we can make B*(T")
infinite.

It is easy to seethat if every model A of T" with card(|A|)) = w; is saturated,
soisevery model B of th((A, z;),<,) forany {z;} C |A| with A < w;. Using this
fact we can see that by adding a finite number of constants to an w,-categorical
T, we can define a strongly minimal set. For, if we suppose the contrary, we can
partition any infinite set .S (of which there must be at least one) into infinite sets
S} and Si by adding a finite set I} of constants; given ST, 5%, ..., Sk, we can
partition each into apair of infinite sets, using somefinite set £}, of constants. The
theory 7" obtained by adding the constants | J,_, F; to 7" will be w;-categorical if
T is, by the previous remark, but P*(7") will be uncountable, which contradicts
the result in [7] mentioned at the beginning of this chapter.

Now let T" be w;- but not w-categorical and let 7" be an extension by afinite
set ¢;, ¢ < n, of constants which satisfies the hypothesis of Theorem 4. Let B bea
denumerable saturated model of 7. Then B contains an n-tuple (b, ... ,b,_1) Of
the type used in extending 7" to 7", and (B, bo, ... ,b,_1) = B’ isamodel of T".
If B < C,withcard(|C|) = w, then (B, by, ... ,bp—1) < (C,bg,... ,bp_1) =C".
The dimension of the closure of the strongly minimal set ¢ isinfinite, therefore
0 is the dimension of the closure of ¢©’. Thus C” is saturated as a model of 77,
and C, being areduct of a saturated model is saturated (see [4] p. 50). We have
proved

Theorem 5. If T isw;- but not w-categorical, B is a denumerable saturated
model of 7', and B < C with card(|C|) = w, then C'is saturated.
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