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1. The basic idea of model theory
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A formula is a grammatical expression φ in

some language (natural or formal) that can

be used to make a true or false statement.

But in fact φ may need interpreting in order

to become either true or false.

So we have

Formula φ
plus yields truth value

interpretation I

We say that φ is true in I,

or that I satisfies φ,

or that I is a model of φ,

or in symbols I |= φ,

if under the interpretation I, φ is true.

FIRST SLOGAN: A formula defines a class of

interpretations, viz. those which make it true.

So model theory is part of the theory of

definition.
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English example (based on Wason selection

task experiment, 1966)

φ is the sentence

If the letter on one side of the card is

a vowel, the number on the other side

is even.

A suitable card gives an interpretation of ‘the

letter on one side of the card’, and of ‘the

number on the other side’.

The card is a model of φ if it satisfies the rule

expressed in φ.

SECOND SLOGAN: Model-theoretic truth is

ordinary truth. Model-theoretic satisfaction is

ordinary satisfaction.
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Typical examples of phrases needing

interpretation:

1. Singular definite descriptions

‘the card’

‘the number on the back’

2. Variables

‘X’, ‘G’, ‘g’, ‘g1’ etc. etc.

Model theory concentrates on phrases of

these two kinds.

An interpretation for such phrases says what

they refer to. (Such interpretations are also

known as assignments or valuations.)
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Sometimes an expression needs interpretation
but gets a default interpretation from the
context (or point of reference) where it is
applied. For example

‘the President of the Russian
Federation’

currently refers to Boris Yeltsin; the default
interpretation is the present one.

If we are studying a particular card, the
default interpretation of

‘the number on the back’

is the number on the back of that card. The
card serves as a point of reference.

The interpretation of this phrase has to be a
certain sort of thing, viz. a number.
Expressions with this feature are called sortal.
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Quantifiers

These involve interpretation at two levels.

Take for example

‘Everybody loves Madonna.’

1. This is true in a context if in that context

every assignment to the sortal variable

‘xperson’ satisfies the formula

‘xperson loves Madonna.’

2. The context must determine who or what

counts as a ‘person’; we say it has a domain

or universe of persons.
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Note: In 1 we split the interpretation into a
context and an assignment. This division is
fundamental in model theory.

The context by itself is called a structure.

In logic a formula that needs only a context
to interpret it, and not a further assignment,
is called a sentence. For example

‘Everybody loves Madonna.’

is a sentence, but

‘xperson loves Madonna.’

is only a formula, because it has a free
variable.

A set of sentences is called a theory. A model
of a theory is a model of all the sentences in
the theory.
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Mathematical example

A partial ordering is defined to be a structure
which is a model of the following theory:

∀x (x 6 x).

∀x∀y (x 6 y ∧ y 6 x→ x = y).

∀x∀y∀z (x 6 y ∧ y 6 z → x 6 z).

Here ‘∀x’ means ‘for all x’, ‘∧’ means ‘and’,
‘→’ means ‘if . . . then’. These are logical
symbols with fixed meanings, except that a
partial ordering must have a domain (to
control the possible assignments to variables).

In this formal language an expression ‘aRb’
means: the pair (a, b) are in the relation R.
The relation symbol ‘6’ is short for:

‘the relation called 6’.

Each partial ordering A has a relation called
6. We write this relation as ‘6A’.
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In model theory since 1950 the usual

situation is that we have a class of structures

and we classify them according to what

sentences are true in them.

We need to make sure that the structures are

suitable for the sentences, i.e. that they give

interpretations for the right symbols.

A signature is a set of symbols needing a

structure to interpret them. The symbols are

called the non-logical symbols of the

signature. A structure interpreting all and

only the symbols in the signature σ is called a

σ-structure.

A language of signature σ is one whose

formulas need for interpretation only a

structure interpreting the symbols in σ (and

assignments to variables).
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Non-logical symbols normally have one of the

following forms:

• (individual) constants a, b, c etc.,

standing for elements of the domain;

• function symbols F , G, H etc., of fixed

arity, standing for functions over the

domain;

• relation symbols P , Q, R etc., of fixed

arity, standing for relations over the

domain.

One can also have propositional symbols p, q,

r etc., that stand for Truth or Falsehood

depending on the structure.
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Example: The signature of arithmetic has

the following symbols.

• Individual constant symbol ‘0’.

• No propositional symbol.

• Relation symbol ‘6’ of arity 2.

• Function symbols ‘S’ of arity 1, and ‘+’,

‘.’, both of arity 2.
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Hilary Putnam says in ‘Models and reality’:

‘Models are not lost noumenal waifs looking

for someone to name them; they are

constructions within our theory itself, and

they have names from birth.’

He seems to mean that no structures exist

except those for which we have names. This

is Putnam’s private ontology; model theory

makes no such restriction.

In particular we don’t require even that

signatures can be named, or that their

symbols can be physically written. The

expression ‘the function named ‘F ’ in the

structure A’ need not be read literally either;

it means the function FA, which is a part of

A.
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2. The classical indistinguishability

theorems

These are theorems about first-order model

theory, i.e. where the formulas are built up

from atomic formulas

R(x, y, a),

F (G(x), y) = G(z)

etc., using

• ¬ ‘not’ ;

• ∧ ‘and’, ∨ ‘or’ ;

• ∀ ‘for all elements’,

∃ ‘there is an element such that’.
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Three useful notions

1. We say that two σ-structures A, B are

elementarily equivalent, in symbols A ≡ B, if

exactly the same first-order sentences are

true in A as in B.

2. We say that two first-order theories T , U

of signature σ are (logically) equivalent if

exactly the same σ-structures are models of T

as of U .

3. Two sentences φ and ψ are equivalent

modulo the theory T if every model of T that

is a model of φ is also a model of ψ and vice

versa.
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Recall that a structure A of signature σ has a

domain dom(A).

Recall also that if c is an individual constant

in σ then cA must be in dom(A);

and if F is a function symbol in σ, say with

arity n, then for any n elements a1, . . . , an of

dom(A),

FA(a1, . . . , an)

is also an element of dom(A).

We express this by saying that dom(A) is

closed under the constants and function

symbols of σ.

We say that a σ-structure B is a substructure

of A, and that A is an extension of B, if

dom(B) ⊆ dom(A)

and within dom(B), all of cB, RB, FB etc. are

just the restrictions of cA, RA, FA etc.
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Example.

In the signature with 0, + and −, the

structure 2Z of even integers is a

substructure of the structure Z of integers.

In fact we can ‘generate’ 2Z from 4 and 6,

say, by closing off under 0, + and −.

Generating is an important way of getting

substructures.

By contrast N, the structure of natural

numbers 0,1,2, . . ., is not a substructure of Z
in this signature,

since it is not closed under −.

But it is a substructure of Z in the smaller

signature consisting of 0 and +.
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A first-order sentence is said to be universal if

it consists of a string of universal quantifiers

∀x (or no quantifiers), followed by a formula

with no quantifiers.

A theory is universal if all the sentences in it

are universal.

For example the theory of partial orderings

(previous lecture) is universal.
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ÃLoś-Tarski Theorem. For any first-order

theory T the following are equivalent:

(a) T is logically equivalent to a universal

theory.

(b) If A is any model of T , then every

substructure of A is also a model of T .

Corollary. If A is a model of a universal

theory T and every first-order sentence is

equivalent modulo T to a universal sentence,

then every substructure of A is elementarily

equivalent to A.
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Augustus De Morgan (1846): ‘If language

were copious enough, [existential]

propositions would seldom occur: and the

idioms of every tongue are probably

influenced by its power of . . . converting

[existentials] into the form of universals.’

Thus if

∀x∃y∀z∃w R(x, y, z, w),

is true in A, it can be rewritten as

∀x∀z R(x, F (x), z, G(x, z)),

where T contains, for example,

∀x∀y∀z∀w (R(x, y, z, w)→

R(x, F (x), z, G(x, z))

which is a universal sentence.

The functions FA, GA (or the symbols F,G)

are called Skolem functions.
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By the cardinality of a structure A, |A|, we

mean the number of elements of the domain

of A.

By the cardinality of a signature σ, |σ|, we

mean the number of symbols in σ, or ℵ0,

whichever the greater.

(The ℵ0 is to allow for ‘closing off’ in the

proof of the theorem below.)

Putting all these tricks together:

Downward Loewenheim-Skolem

Theorem, Skolem 1920

Let A be a σ-structure of infinite cardinality κ,

and let λ be a cardinal which is < κ but > |σ|.
Then A has a substructure which is

elementarily equivalent to A and has

cardinality λ.
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Why just go downward?

The following is also true, though its proof is

completely different.

Upward Loewenheim-Skolem Theorem,

Mal’tsev 1938

Let A be a σ-structure of infinite cardinality

κ, and let λ be a cardinal which is > κ and

> |σ|. Then A has an extension which is

elementarily equivalent to A and has

cardinality λ.

Putting these facts together, first-order logic

is absolutely hopeless at distinguishing

between infinite cardinals.
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The Upward Loewenheim-Skolem Theorem

rests on the following important result.

We say that a first-order theory T is

consistent if it has at least one model.

Compactness Theorem (Goedel,

Mal’tsev, Henkin)

Let T be a first-order theory. If every finite

subset of T is consistent, then T is consistent.

Typical application. Consider the structure

R of real numbers, in any reasonable

signature.

Let T be the set of all first-order sentences

true in R, together with the sentences

c > 0, c < 1, c < 0.1, c < 0.01, . . .

This theory has a model A, by the

compactness theorem. The element cA is

‘infinitesimal’, i.e. greater than 0 but less

than any positive fraction.
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The Compactness Theorem tells us that

first-order logic is not just bad at

distinguishing infinite cardinals from one

another; it can’t even distinguish finite from

infinite.

(Apply the Compactness Theorem to the set

of sentences expressing:

There is at least one element.

There are at least two elements.

There are at least three elements.

etc.)

Also the theorems of this section tell us

nothing about finite structures. To get useful

information about distinguishing between

finite structures, we must look elsewhere.
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3. Distinguishing elements within a

structure

We go back to the first lecture and recall

that interpretations can be split into two

parts: a structure that provides a context,

and an assignment to free variables. So far

we have ignored assignments (though we

would have had to mention them in some

proofs). Now we do the opposite: we fix a

structure and look at assignments.
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Throughout this lecture, σ is a fixed

signature.

For technical reasons we assume σ has at

least one individual constant.

A is a fixed σ-structure.

We can list the variables of the language as

x1, x2, x3, . . .

An assignment (or tuple) of length n in A is

a list of n elements of the domain of A:

ā = (a1, a2, . . . , an).

It assigns a1 to x1, a2 to x2 and so on.

If φ is a formula whose free variables are all

among x1, . . . , xn, then φ separates the

assignments of length n into those that

satisfy φ and those that don’t.
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We write φ(An) for the set of assignments of

length n that satisfy φ in A.

φ(An) is an n-ary relation on dom(A);

we say it is a first-order definable relation on

A.

The big question: In any given structure A,

what are the relations of the form φ(An)?

Example: A is R, the field of real numbers;

n = 2.

If φ is the formula

x2
1 + x2

2 = 1

then φ(R2) is the unit circle.
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Fact. The class of first-order definable n-ary

relations on A

• contains the empty set;

• contains the set dom(A)n of all tuples of

length n in A;

• is closed under intersection ∩;

• is closed under union ∪;

• is closed under complement

(dom(A)n \X).

The last three clauses say that this set is

closed under boolean combinations.
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In some cases we can describe a simple set of

first-order formulas, called basic formulas,

and prove that every formula defines the

same relation in A as some boolean

combination of basic formulas.

Then the first-order definable relations are

exactly the boolean combinations of the

relations defined by basic formulas.

Arguments along these lines are known as the

method of quantifier elimination. They are

usually not easy, though some relatively

recent adaptations of back-and-forth games

make them easier.

Fortunately the method of quantifier

elimination works (and gives important

information) for many interesting

mathematical structures.
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The term algebra T

(Martin Davis is responsible for logic
programmers calling T the Herbrand universe,
but he has since regretted this name which is
historically inaccurate.)

The set of terms of the signature σ is defined
inductively by:

• Every individual constant is a term.

• Every variable is a term.

• If F is a function symbol of arity n, and
t1, . . . , tn are terms, then

F (t1, . . . , tn)

is a term.

A closed term is a term with no variables in it.
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We make the set C of closed terms of σ into

a σ-structure T as follows.

The domain is C.

For each individual constant c, cT is c.

For each n-ary function symbol F , if t1, . . . , tn
are closed terms, then

FA(t1, . . . , tn) = F (t1, . . . , tn).

For each relation symbol R, RT is empty.

Universal algebraists know T as the free

σ-algebra on no generators.
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Given a closed term

F (G(a), G(F (c, d)))

we shall call G(a) the (1)-th subterm

and G(F (c, d)) the (2)-th subterm.

Likewise we call a the (1,1)-th-subterm,

F (c, d) the (2,1)-th subterm,

d the (2,1,2)-th subterm, etc.

We call the whole term the ()-th subterm.

Quantifier elimination theorem. As the

basic formulas we can take all formulas of the

forms

The (. . . )-th subterm of xi is equal to

the (. . . )-th subterm of xj.

The (. . . )-th subterm of xi begins

with an F (or a c, etc.).
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Hence none of the following can be expressed

by first-order formulas:

1. x appears in y as a subterm.

2. The symbol ‘F ’ appears in the term x.

3. x and y have a subterm in common.
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4. Games for comparing structures

The first-order languages in this lecture have

only finitely many symbols in their signatures,

and none of these symbols are function

symbols.

A typical example is the language of graphs.

It has just one 2-ary relation symbol E;

E(x, y)

means that there is an edge between node x

and node y.
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In a graph G we say that a list of nodes

(a1, . . . , an)

is a path from a1 to an if there are an edge

from a1 to a2, an edge from a2 to a3, . . . , an

edge from an−1 to an.

The length of this path is n− 1.

The list (a) counts as a path from a to a of

length 0.

We say that nodes a, b in a graph are

connected if there is a path from a to b; their

distance is the length of a shortest such path.

We say that the graph itself is connected if

every pair of nodes of the graph is connected.

Our main task in this lecture is to show that

there is no first-order sentence distinguishing

the connected graphs from the unconnected

ones.
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We want to compare two σ-structures A and
B.
We shall do it by setting up a game
EFω(A,B) (EF after Ehrenfeucht and
Fräıssé).

The game will use the notion of an atomic
formula.

For any signature σ, the atomic formulas of σ
are the formulas of these two kinds:

• t1 = t2, where t1 and t2 are terms.

• R(t1, . . . , tn), where R is a relation symbol
of arity n and t1, . . . , tn are terms.

So in the signature for graphs, the only
atomic formulas are

xi = xj, E(xi, xj).
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There are two players, ∀belard (often known

as Spoiler) and ∃loise (often known as

Duplicator).

Note that Spoiler is male and Duplicator is

female.

Intuitively, ∀belard is trying to show that A

and B are different by finding a feature of one

structure that can’t be matched in the other.

∃loise is trying to show that A and B are the

same, by finding a match in the other

structure for each feature that ∀belard points

to.
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The game EFω(A,B) takes place in steps,

starting at the 1st.

In each step (say the n-th), first ∀belard

chooses an element from either dom(A) or

dom(B), then ∃loise chooses one from the

other of these sets.

We write an for the element chosen from A

and bn for the element chosen from B.

After infinitely many steps, ∀belard wins if

there is some atomic formula φ which is

satisfied by exactly one of (a1, a2, . . .) and

(b1, b2, . . .); otherwise ∃loise wins.

Note also the game EFn(A,B) where n is a

finite number. This is the same as above,

except that the players stop as soon as they

have chosen an, bn.

The smaller n, the easier it is for ∃loise to

win.
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EXAMPLE FOR GAME
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We say that A is n-equivalent to B, in

symbols

A ∼n B,

if ∃loise has a winning strategy for the game

EFn(A,B).

If she has a winning strategy for the infinite

game EFω(A,B), we say that A and B are

back-and-forth equivalent,

A ∼ B.

Note:

A ∼ B ⇒ . . . ⇒ A ∼n B ⇒ A ∼n−1 B ⇒ . . .

because the games get easier for ∃loise to win

as they get shorter.

FACT. All the relations ∼, ∼n are equivalence

relations.

39



The main theorem about these games needs

the notion of the quantifier rank qr(φ) of a

formula φ. This is defined inductively:

• If φ is atomic then qr(φ) = 0.

• qr(¬φ) = qr(φ).

• qr(φ ∧ ψ) = qr(φ ∨ ψ) = max(qr(φ), qr(ψ)).

• qr(∀xφ) = qr(∃xφ) = qr(φ) + 1.

Important fact: Every first-order formula has

a finite quantifier rank.
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Fräıssé’s Theorem. Let A,B be

σ-structures. Then for each n the following

are equivalent:

(i) A ∼n B.

(ii) If φ is any sentence of quantifier rank at

most n, then A is a model of φ if and only

if B is a model of φ.

Corollary. Let K be a class of σ-structures.

Suppose that for every finite n there are a

structure An in K and a structure Bn not in

K, such that An ∼n Bn. Then there is no

first-order sentence whose models are the

structures in K.
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Let k,m be positive integers with k > 3.

We write [k,m] for the graph consisting of m

copies of a cycle of length k.

Then [k,m] is connected if and only if m = 1.

Suppose A, B are graphs of the form [k,m]

(possibly different k,m).

Suppose ā = (a1, . . . , ap) are nodes of A and

b̄ = (b1, . . . , bp) are nodes of B.

We say ā and b̄ are h-matched if for all i, j

and every h′ 6 h,

distance(ai, aj) = h′ ⇔ distance(bi, bj) = h′.
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One can show: If A = [k,m] and B = [k′,m′]
and ā, b̄ are as above and are

(2n−1 − 1)-matched, then (ā, b̄) is a winning

position for ∃loise in EFp+n(A,B). Then:

Fact. If k, k′ are both > 2n then

[k,m] ∼n [k′,m′].
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Let n be a positive integer. Then by the Fact

above,

[2n,1] ∼n [2n,2].

Since one of these graphs is connected and

the other is not, this shows that no first-order

sentence distinguishes between connected

graphs and unconnected graphs.

Hence there is no first-order formula φ(x, y)

that expresses in graphs that x, y are

connected.

Otherwise the sentence

∀x∀y φ(x, y)

would have distinguished between connected

and unconnected graphs.
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5. Ways of cheating

During the 1980s several authors proposed

using first-order logic as either a programming

language or a specification language.

At first glance this is absurd.

We saw in Lecture Two that first-order logic

can’t express that a structure is finite.

We saw in Lecture Three that first-order

logic can’t express that a graph is connected.
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Example from Prolog

Sterling and Shapiro, The Art of Prolog, give

the following Prolog program to define

connectedness in graphs:

connected(Node,Node).

connected(Node1,Node2) ←
edge(Node1,Link),

connected(Link,Node2).

This is a first-order theory T :

∀x C(x, x).

∀x∀y∀z (E(x, y) ∧ C(y, z)→ C(x, z)).
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∀x C(x, x).

∀x∀y∀z (E(x, y) ∧ C(y, z)→ C(x, z)).

Note 1: This theory T is not in the language

of graphs, because it has the extra symbol C.

Note 2: If we read ‘E(x, y)’ as ‘there is an

edge from x to y’, and ‘C(x, y)’ as ‘there is a

path from x to y’, then both sentences are

true in any graph.

Note 3: Both sentences are still true in any

graph if we read E as before but take

‘C(x, y)’ to be true for all nodes x and y

(regardless of whether they are connected).
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So T is hopeless as a straightforward

model-theoretic definition of connectedness.

So why is it called a definition by Prolog

people?

Clue: T is a definite Horn clause theory.

This means that each sentence in T has one

of the forms

∀x1 . . . ∀xn ψ,

∀x1 . . . ∀xn (φ1 ∧ . . . φk → ψ)

where φ1, . . . , φk, ψ are atomic formulas.
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Suppose G is any graph.
Give each node of G a name, by adding new
individual constants to the signature if
necessary.
There is a smallest set U of atomic sentences
that contains:

(i) All the atomic sentences true in G.

(ii) All the sentences C(a, a) (a an individual
constant).

(iii) The sentence C(a, c) whenever U contains
sentences E(a, b) and C(b, c).

We read the second and third clauses off
from the Horn theory T .

Then U is a complete description of a
structure H which is a model of T .
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After clause (i) we never added new individual

constants or equalities ‘a = b’ or sentences

beginning with ‘E’.

So H is an exact copy of G, except that it

also has a new binary relation CH.

This relation holds between a and b if and

only if a and b are connected.

There are several ways of saying this.

One (the universal algebraist’s) is that the

only model of T that we are concerned with

is the ‘free model over G’.

Another (the logician’s) is that T is being

used not as a first-order theory but as part of

an inductive definition.
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Algebraic example

Suppose A is any infinite structure.

Let G(A) be the group of all permutations of

dom(A).

What can we say about A, using first-order

sentences about G(A)?

Let Transp(x) say:

x2 = 1 and x 6= 1 and for all y there is

a subgroup of order at most 6

containing both x and y−1xy.

Then Transp(x) expresses that x is a

transposition.
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Let Overlap(x, y) be

Transp(x) ∧ Transp(y) ∧ xy 6= yx.

Then Overlap(x, y) expresses that x, y are

transpositions (a, b), (a, c) with b 6= c; we call a

the pivot of x, y.

One can write a formula Equiv(x, y, z, w)

which expresses that Overlap(x, y),

Overlap(z, w) and x, y have the same pivot as

z, w.

Now to express ‘w moves every element of

dom(A)’ we say:

Whenever Overlap(x, y), it is false that

Equiv(x, y, wx,wy).
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To express ‘w is cyclic’ we say:

Every x that commutes with w either

moves every element of dom(A)

moved by w, or moves no element of

dom(A) moved by w.

So we can write a first-order sentence φ in

the language of groups, such that for every

infinite structure A, G(A) satisfies φ if and

only if A is countable.

Namely: ‘There is a cyclic permutation that

moves every element.’
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Question: Why doesn’t this contradict the

Upward Loewenheim-Skolem Theorem?

Answer: Because φ is not about A but about

a structure built up from A using set theory.

One can use first-order sentences to make

other strong statements about A, by talking

instead about other structures built up from

A:

for example the universe of sets with

elements of dom(A) as urelements.
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