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1.1

FIRST TUTORIAL
Entailments
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1.2

Two sentences:

(a) Noam Chomsky is very clever.

(b) Noam Chomsky is clever.

If (a) is true then (b) must be true too.
We express this by saying that (a) entails (b), in symbols

NC is very clever. |= NC is clever.
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1.3

If p and q are sentences, the expression

p |= q

is called a sequent.
If it is true, i.e. if p does entail q,
then we say it is a valid sequent,
or for short an entailment.
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1.4

Provisional definition

Logic is the study of entailments.

But it’s a bad idea to go to a definition so early.
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1.5

Typical problem

Imagine a situation with two Noam Chomskys,

one very clever and one very unintelligent.
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1.6

Conversation:

• “Noam Chomsky is very clever.”

• “Yes, but on the other hand Noam Chomsky
is not clever at all.”

We can understand this conversation.
(David Lewis, ‘Scorekeeping in a language game’.)
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1.7

Remedy

A situation (for a set of sentences) consists of the information
needed to fix who the named people are, what the date is,
and anything else relevant to the truth of the sentences.

Then we can revise our notion of entailment:
‘(a) entails (b)’ means

In every situation, if (a) is true then (b) is true.

This remedy is not waterproof,
but it will allow us to continue building up logic.
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1.8

We generalise. Suppose p1, . . . , pn and q are sentences.
The sequent

p1, . . . , pn |= q

(‘p1, . . . , pn entail q’) means that in any situation
where p1, . . . , pn are all true, q is true too.

p1, . . . , pn are the premises of the sequent,
q is its conclusion.
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1.9

In particular

|= q

expresses that q is true in every situation
(i.e. a necessary truth).
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1.10

Gerhard Gentzen

Gerhard Gentzen made some of the most important
discoveries in logic.

In particular he discovered a mathematical theory of
entailments,
which we will study for the rest of this lecture.

He deserves to be better known.

11

1.12

Axiom Rule

For every sentence p,

p |= p.

For example:

Bush was right to invade Iraq. |= Bush was right to
invade Iraq.
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1.13

Three structural rules

1. If p, q |= r then q, p |= r. (A typical exchange rule)

2. If p |= r then p, q |= r. (An example of monotonicity, also
called weakening.)

3. If p, q, q |= r then p, q |= r. (A typical contraction rule.)
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1.14

Jean-Yves Girard (1989):

In fact, contrary to popular belief, these [structural]
rules are the most important of the whole calculus
. . .

Girard in his linear logic drops the structural rules in order to
study (1) the order in which the premises are used to reach
the conclusion, (2) exactly which premises are really needed,
and (3) how many times each premise is used.

This makes sense only when we have a notion of
‘reaching’ the conclusion from the premises.
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1.15

The cut rule

Suppose

p1, . . . , pn |= q,

p1, . . . , pn, q |= r.

Then

p1, . . . , pn |= r.

The sentence q is cut out.

The cut rule is the only Gentzen rule in which we ‘lose’ a
whole sentence as we generate a new entailment.
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1.16

There remain the Logical rules.

Typical examples, the rules for ‘and’:

1 (lefthand rules). If p |= r then

(p and q) |= r.

If q |= r then

(p and q) |= r.

2 (rightthand rule). If p1, . . . , pn |= q and p1, . . . , pn |= r

then

p1, . . . , pn |= (q and r).
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1.17

We can justify the rules for ‘and’ by noting that
(p and q) is true exactly when p and q are both true.

Truth table of ‘and’:

p q (p and q)

T T T

T F F

F T F

F F F
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1.18

Charles Peirce

1839–1914
introduced truth

tables
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1.19

But equally we can deduce the truth table of ‘and’
from Gentzen’s rules:

• By the axiom rule, p |= p.
So by the lefthand rule for ‘and’,

(p and q) |= p.

So if (p and q) is true then so is p.
Similarly if (p and q) is true then so is q.
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1.20

• Conversely, by the axiom rule, p |= p

so by weakening, p, q |= p.
Similarly p, q |= q.
But then by the righthand rule for ‘and’,

p, q |= (p and q).

So if p and q are both true, then so is (p and q).
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1.21

Gentzen’s rules for ‘Every’:

3 (lefthand rule):

If

(� � � Noam Chomsky + ++) |= r

then

(For everybody x, � � � x + ++) |= r.

(We can replace ‘Noam Chomsky’ by any name of a
person, since ‘everybody’ is a quantifier ranging
over people.)

21

1.22

Comment

We can’t replace

(For everybody x, � � � x + ++)

by
(� � � everybody + ++).

For example

(VALID:) I haven’t read Noam Chomsky. |= I haven’t
read Noam Chomsky.
(INVALID:) I haven’t read everybody. |= I haven’t
read Noam Chomsky.
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1.23

4 (righthand rule for ‘Everybody’):

If

p |= (� � � Mr or Mrs X + ++)

then

p |= (For everybody x, � � � x + ++).

Idea: If a statement about Mr or Mrs X must be true
regardless of who Mr or Mrs X is,
it must be true about everybody.
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1.24

Both of Gentzen’s rules for ‘Every’ follow the language and
practice of mathematicians.

Otherwise he probably wouldn’t have discovered them.

Mathematicians had adjusted their language so that
entailments could often be recognised from their
grammatical structure.
This is a feature of Frege’s ‘logically perfect languages’.
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1.25

Gottlob Frege

1848–1925
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1.26

5. Gentzen’s righthand rule for ‘If . . . then’:

Suppose

p, q |= r.

Then

p |= (If q then r).
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1.26

Again if you think in terms of ‘reaching’ the conclusion from
the premises,
this rule says that to show you can reach the conclusion

(If q then r)

it’s enough to start from q (i.e. assume q)
and then reach r.
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1.27

But this is an interpretation of Gentzen’s rules,
and it lands us in problems about what it is to assume
‘for the sake of argument’ something we know is false.

One view is that Gentzen’s calculus shows how
assumptions ‘for the sake of argument’ can be explained
without having to consider counterfactual implications.
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1.28

To introduce Gentzen’s other rules, we have to extend the
notions of sequents and entailments, by allowing any
number of sentences on the righthand side.

We say the sequent

p1, . . . , pn |= q1, . . . , qm

is valid, and an entailment, if there is no situation in which
p1, . . . , pn are all true and q1, . . . , qm are all false;
in other words, if in every situation where p1, . . . , pn are all
true, at least one of q1, . . . , qm is true.
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1.29

6. Gentzen’s lefthand rule for ‘If . . . then’:

Suppose

p, r |= s

and

p |= q, s.

Then

p, (If q then r) |= s.
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1.30

The link between Gentzen’s rules and truth tables is not so
clear for ‘If . . . then’ as it is with ‘and’.
If ‘If . . . then’ has a truth table, then the Gentzen rules force
it to be

p q If p then q

T T T

T F F

F T T

F F T
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1.31

Gentzen’s rules for ‘not-p’ (i.e. ‘It is not true that p’):

7 (lefthand). If

p |= q, r

then
p, not-q |= r.

8 (righthand). If

p, q |= r

then
p |= not-q, r.
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1.32

Notation: We write

(p ∧ q) for (p and q) ;

(p ∨ q) for (p or q or both) ;

(p → q) for (If p then q) ;

¬p for not-p ;

∀x for (For everything x),

∃x for (There exists something x).

First-order logic is logic using just these symbols.
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1.33

We can use the Gentzen rules as a mathematical calculus.
When we do this, we normally write 	 rather than |=.

Example:
(1) p, q 	 q, r by axiom rule.
(2) p, q, r 	 r by axiom rule.
(3) p, q, (q → r) 	 r by (1), (2), left rule for →.
(4) p, (q → r) 	 p, r by axiom rule.
(5) p, (p → q), (q → r) 	 r by (3), (4), left rule for →.
(6) (p → q), (q → r) 	 (p → r) by right rule for →.
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1.34

We proved:

(p → q), (q → r) 	 (p → r).

Gentzen noticed that although the entailment ‘cuts out’ the
sentence q, the proof never uses the cut rule.

His ‘Cut elimination theorem’ showed that in his calculus,
the cut rule is never needed.

Hence we can construct a proof of an entailment by working
backwards from the entailment.
(This is the idea behind the tableau calculus.)
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2.1

SECOND TUTORIAL
Form and matter
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2.2

The definition of logic

Are we ready to come back to this question?

Two naive tests of whether something belongs to logic:

• Do the people who study it call themselves logicians?

• Does it involve the same skills as other things that
belong to logic?
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2.3

By these tests, there are two clusters of subjects,
one around entailment and the other around definability,
with important overlaps between them.

Related to entailment:

Proof theory.
Logic programming.
Constructive mathematics and foundations of
mathematics.
Modal and temporal logics.
Dynamic logics and logics of processes.
etc.
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2.4

Related to definability:

Set theory.
Recursion theory.
Lambda calculus.
Model theory.
Formal semantics of artificial or natural languages.
Formal specification theory.
etc.

Category theory and relation algebras are related to logic
but not in a simple way.
People disagree about whether fuzzy logic is a part of logic.
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2.5

This kind of definition of logic draws a picture of an area of
research,
but it doesn’t answer any fundamental question.

Are there more fundamental questions that could lead us to
a more precise definition of logic?

(Myself I believe not, but this is a question that quite a lot of
people have strong views on.)
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2.6

Entailments are usually instances of general laws

Recall the sequent we proved last time:

(If p then q), (If q then r) |= (If p then r).

The expression

(If p then q)

is not a sentence, because it contains variables p, q.
So we call it a formula.

What we showed is that if we replace p and q by any sentences,
then the resulting sequent is a valid entailment.
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2.7

It’s useful to generalise the definition of entailment to cover
formulas as well as sentences:

If p1, . . . , pn and q are formulas, then

p1, . . . , pn |= q

means:

Whenever we replace the variables by appropriate
expressions so as to get sentences, then the sentences
got from p1, . . . , pn entail the sentence got from q.
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2.8

Back to our two sentences:

(a) Noam Chomsky is very clever.

(b) Noam Chomsky is clever.

Here (a) entails (b).

Compare:

(a’) Georgia is very mountainous.

(b’) Georgia is mountainous.

Again (a’) entails (b’).
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2.9

We can generalise to a formula with variables X and Y :

(c) X is very Y .

(d) X is Y .

In our new sense of entailment, (c) entails (d).
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2.10

Some people have suggested that when we replace
sentences by formulas with variables,
we are ‘abstracting away the content’.

Immanuel Kant:

Logic contains no matter at all, only form of thought.

(From Dohna-Wundlacken Logic)
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2.11

Immanuel Kant

1724–1804

46

2.13

According to the textbook of Hilbert and Ackermann,
Grundzuege der Theoretischen Logik (1928), entailments like
this can be handled by logic if we apply ‘conceptual
analysis’.

Their example was

There is a son. |= There is a father.

In their conceptual analysis, ‘y is a son of x’ means ‘y is male
and x is is either the male parent of y or the female parent of
y’, and ‘x is a father of y’ means ‘x is the male parent of y’.
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2.15

The mathematicians’ view:
We can leave conceptual analysis to the philosophers and
the linguists.

This is too fast. Recall the sequent we proved earlier:

(If p then q), (If q then r) |= (If p then r).
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2.16

Counterexample (Walter Burley, c. 1300)

p I call you a donkey.

q I call you an animal.

r I state the truth.
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2.17

Analysis of Burley’s counterexample

The meaning of Burley’s r changes according to its context.
It expresses ‘The statement of mine just mentioned is true’.

We have to put another condition on the sentences used to
replace variables in entailments: Their contribution to the
truth or falsity of the sentence as a whole depends only on their
truth value in the (non-verbal) situation in question.

So to apply the sequent calculus to sentences of English,
we must be prepared to do some conceptual analysis.
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2.18

Kant also believed that entailments are related to ‘thought’.

We often ‘think’ entailments

p |= q

in the sense that we believe p,
and as a result we come to believe q too.
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2.19

Some people believe that we have a ‘deducing’ module,
which we use in all our thinking
and possibly in our use of language too.

Kant again:

Logical rules are not ones according to which we
think, but according to which we ought to think.
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2.20

Problem: Work of Peter Wason and others shows that
in fact our intuitive reasoning often disagrees with
logical entailments.
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2.22

The Wason selection task (1966)

You will be shown four cards.

Each of these cards has a number written on one side
and a letter on the other.

You will also be shown a statement S about the cards.

Then you must answer the following question:

Which card or cards must I turn over in order to
check whether the statement S is true?
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2.23

S: If a card has a vowel on one side, it has an even number
on the other side.

E K 4 7
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2.24

The true answer is cards E and 7.

In my logic class (which was already expert with truth
tables):

E and 7 0%

E 50%

E and 4 20 %

K and 7 15%

other 15%.

This experiment always gives similar results.
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2.25

How did we evolve to be so illogical?

Probable answer: The most important things for the species
are

• to avoid being killed by tigers or buses,

• to catch, dig or buy meat or vegetables,

• to seduce members of the opposite sex.
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2.26

In these circumstances it is not obvious that we ought
always to reason logically.
Logical reasoning is expensive in time and effort.
It uses up large amounts of working memory and requires
one to form abstract concepts.

Oaksford and Chater (1994) analysed the Wason selection
task in terms of ‘optimal data selection’, and got a prediction
not far from the observed facts.
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2.27

Summary

Logicians can often explain entailments as examples of
general laws.

One can develop these general laws as a mathematical
theory.
In a moment we shall see that one can not only prove laws,
but also refute incorrect laws of entailment.

But we hit serious practical and philosophical questions
when we apply the general laws to either (a) entailments in
ordinary English or (b) intuitive human reasoning.
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2.28

Eliminating false entailments

We can show that a rule is false by giving a counterexample.

For example Aristotle seems to have believed the following
entailment:

If p then q. If not-p then q. |= Not-q.

Counterexample:

p Rome is beautiful.

q Rome is a town.
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2.29

Euclid’s parallel postulate

Euclid wrote some axioms for geometry, including one
known as the Parallel Postulate.

(A modern form of the Parallel Postulate: For every infinite
straight line L in the plane and every point P not on L,
there is exactly one infinite straight line in the plane that
passes through P and has no points in common with L.)

An old question: Do Euclid’s other axioms together entail
the Parallel Postulate?
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2.30

19th century mathematicians gave the answer No,
by treating the terms ‘point’, ‘line’, ‘passes through’ etc. as
variables, and then replacing these variables by other
expressions so as to make the Parallel Postulate false
but the other axioms true.
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2.31

Schwarz’s tesselation
(1872)
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2.32

Hence the question: If an entailment is written in the
language of Gentzen’s sequences, what is the relation
between

(a) The sequent is provable in the sequent calculus.

(b) There is a counterexample to the sequent?

The completeness theorem (essentially Goedel, 1930) says that
for first-order logic, exactly one of (a) and (b) holds.

64



3.1

THIRD TUTORIAL
Truth and proof
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3.2

We saw that we can use the Gentzen sequent calculus to
prove valid sequents in first-order logic.

By the completeness theorem, we can prove all and only the
valid sequents this way.

There are several other proof calculi with various strong and
weak points.
For example Gentzen’s natural deduction calculus uses proofs
that (roughly) start from the premises and finish with the
conclusion.

66

3.3

Propositional logic is first-order logic using only ∧, ∨, →
and ¬, not ∀ or ∃.

We can use truth tables as a kind of proof calculus for
propositional entailments.
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3.4

Example

p q r (p → q) (q → r) (p → r)

T T T T T T

T T F T F F

T F T F T T

T F F F T F

F T T T T T

F T F T F T

F F T T T T

F F F T T T
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3.5

Truth tables are more than a proof calculus for
propositional entailments.

They form a decision procedure.
This means we can use truth tables to check mechanically
whether or not any given propositional sequent is valid.
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3.6

Many mathematical problems can be solved by truth tables,
by translating them into propositional logic.

Example. A proper colouring of a map is a colouring of the
countries in the map, so that if two countries have a border
in common then they are coloured different colours.

In 1976 Appel and Haken used a computer to prove a very
old conjecture: Every map on the surface of a sphere has a proper
colouring using at most four colours.
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3.7

Suppose we have a map and we want to know whether it
has a proper colouring with three colours (R, G, B).

Just trying to colour it is not a good strategy.
We will almost certainly have to keep changing colours as
we go.
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3.8

Instead we number the countries,
and for each country i and each colour C we write

piC

for the statement:

Country i has colour C.
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3.9

Requirements

(1) For every country i,

¬(piR ∧ piG), ¬(piR ∧ piB), ¬(piG ∧ piB).

(2) For every country i,

((piR ∨ piG) ∨ piB).

(3) For every pair of countries i and j with a common
border,

¬(piR ∧ pjR), ¬(piG ∧ pjG), ¬(piB ∧ pjB).
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3.10

Now we draw a truth table showing all possible values of
the propositional variables piC , and we look for a row in
which all the formulas (1), (2), (3) have the value True.

This row tells us how to colour the map:
if piC is true in the row, colour country i colour C.
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3.11

Problem.

Suppose our map has 100 countries.
Then there are 300 propositional variables,
and the number of rows in the truth table is

2300, which is about 1090.

The size of the calculation increases exponentially with the
number of countries.
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3.12

In 2000 the Clay Mathematics Institute offered a prize of a
million dollars to anybody who can show whether there are
mechanical methods for solving truth table problems of this
kind in a reasonable time.

This is the ‘P = NP’ problem.
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3.13

Truth table calculations

We calculate the truth table for one of the sentences in (1) of
slide 3.9:

p1R p1G ¬ (p1R ∧ p1G)

T T T T

T F T F

F T F T

F F F F

We write under each letter its truth value in each row.
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3.14

Next we join p1R and p1G with ∧,
and we write the truth values for (p1R ∧ p1G) under ∧:

p1R p1G ¬ (p1R ∧ p1G)

T T T T T

T F T F F

F T F F T

F F F F F

78

3.15

Finally we add ¬ at the left,
and we write the truth value of the whole formula under ¬:

p1R p1G ¬ (p1R ∧ p1G)

T T F T T T

T F T T F F

F T T F F T

F F T F F F

⇑
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3.16

In this calculation we calculate the truth values,
starting from the sentence letters
and working up to more and more complex formulas.
The value of a compound formula is determined by the
values of its immediate constituents,
including the symbol (∧, ¬) used to combine them.

So the assignment of truth values is compositional.
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3.17

In 1933 Alfred Tarski showed how to extend these
calculations to logic with quantifiers.

On the left, instead of truth value assignments we have
structures
(in general infinitely many)
and assignments of elements of these structures to the free
variables.

The ‘value’ of a formula is the class of those structures and
assignments that make it true.
These values are still assigned compositionally.
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3.18

Suppose that instead of the formulas of first-order logic,
we consider meaningful sentences of a natural language.
Then in place of structures we can take ‘possible worlds’,
and we can follow the suggestion of Carnap and Quine
that Tarski’s way of assigning truth values is a good
substitute for assigning meanings.

The result is Montague’s semantics for fragments of English.
The semantics is compositional, following Tarski’s example.
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3.19

Testing validity

For full first order logic we don’t have a way of testing
whether any given entailment is valid.

In fact Alonzo Church showed in 1936 that there can’t be
such a method, either fast or slow.
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3.21

G. W. Leibniz

1646–1716

84



3.22

Leibniz hoped to build a calculus (a ‘Universal
Characteristic’) that would allow us to solve problems of
reasoning by pure calculation.

Important point: He never claimed his calculus would
determine whether a given statement is true.

He did claim that his calculus would determine whether
any proposed proof is correct or not.
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3.23

Three questions:

(1) Is this a proof?

(2) Does this have a proof?

(3) Is this true?

Apparently Leibniz foresaw that question (1) is decidable,
but he made no claim about (2) or (3).
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3.24

In 1931 Kurt Goedel showed that the question whether a
given arithmetical statement is true is an undecidable
question.

In 1970 he wrote to a student (Yossef Balas) saying that the
key to proving this was to understand the difference
between truth and proof.

We shall sketch a proof of Church’s theorem that rests on the
same idea.
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3.25

We consider the structure N consisting of the natural
numbers.

0, 1, 2, 3, . . .

We write symbols S for ‘plus one’, and 0 for the number
zero.

We write down some true statements about N, using these
symbols:
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3.26

If x and y are numbers with S(x) = S(y) then x = y.
There is no number x such that 0 = S(x).
If x �= 0 then there is y such that x = S(y).
For every number x, x + 0 = x and x.0 = 0.
For all numbers x and y, x + S(y) = S(x + y) and
x.S(y) = x.y + x.

The set of these five statements is called Q.
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3.27

By a diophantine sentence we mean a sentence of the form

There are numbers x1, . . . , xn such that s = t.

where s and t are arithmetical expressions using x1, . . . , xn,
0, S, + and ..

Example. The sentence

There are numbers x, y, z such that x2 + y2 = 4z + 3.

is a diophantine sentence,
writing SSS(u) for u + 3 and SSSS(0) for 4.

This sentence happens to be false.
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3.28

In 1888 Richard Dedekind showed (in effect) that for every
diophantine sentence p, p is true if and only if Q entails p.

So truth and provability agree up as far as diophantine
sentences.

Goedel’s intuition was that this agreement must break down
for more complex sentences, and it’s just a matter of finding
how far we have to search for the breakdown.
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3.29

Goedel and Yuri Matiyasevich, developing ideas of Leibniz,
showed that if we use numbers to label the symbols in a
proof, then we can express and prove properties of proofs
by using diophantine sentences.

In particular, if we have a mechanical test for whether any given
diophantine sentence is true, then for every number n the
sentence

The diophantine sentence with number n is false.

can be written as a diophantine sentence θ(n).
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3.31

Goedel showed also that if this formula θ(x) exists, then we
can find a number n such that the sentence with number n is
in fact

θ(n).

So θ(n) expresses that θ(n) is false.
But this is impossible, since θ(n) is true if and only if θ(n) is
false.
(Compare the Liar paradox: ‘This sentence is not true’.)

So there is test for whether any given diophantine sentence
is true.
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3.32

It follows that there is no mechanical test for whether or not
a sequent of first-order logic is a valid entailment.

For if there was such a test,
we could use it to test whether or not a given diophantine
sentence θ is true,
by checking whether or not Q 	 θ.
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