
NON-STRUCTURE 2

Given a class (K) of structures, an invariant

function on K is a function Γ with domain K

such that

M ∼= N ⇒ Γ(M) = Γ(N).

We call Γ faithful if ‘⇔’ holds instead of ‘⇒’.

Motivating example : K is the class of alge-
braically closed fields M , and Γ(M) =

〈characteristic(M), transcendence degree(M)〉.

We write I(λ,K) for the number of isomor-
phism classes of structures in K of cardinality
λ, i.e. the size of the range of a faithful in-
variant function restricted to structures in K

of cardinality λ.
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We call a class K bad if I(λ,K) = 2λ (the
maximum possible value) for all large enough
λ.

Recall that for any unsuperstable complete first-
order theory T the class of models of T is bad.

If K is bad, this is reckoned to be evidence that
K has no good structure theory.
We shall discuss this.

Default assumption : A class K is the class
of all models of a complete first-order theory
in a countable language.
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If J,K are classes of structures and there is a
map from J to K which preserves
non-isomorphism and cardinality on infinite struc-
tures, then J bad implies K bad.

Example : Let L be a first-order language with
finite signature.
Then the class J of L-structures is faithfully in-
terpretable in the class Graph of simple graphs
(i.e. graphs with no double edges or loops).
This gives a mapping from J to Graph which
preserves non-isomorphism and cardinality on
infinite structures.
(Loewenheim 1915, Lavrov 1963; see Hodges,
Model Theory §5.5.)

So by the previous lecture, using a suitable J,
the class Graph is bad.
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Example : A theory T with DOP (‘dimensional
order property’)

Typical model M is a bipartite graph with parts
P,Q, both infinite; for each pair b1 6= b2 of
elements in P there are infinitely many vertices
in Q joined to both b1 and b2, and each element
in Q is joined to exactly two elements in P .

We code up any infinite graph G as a model
MG.
In MG the elements of P are the vertices of G.
For any distinct vertices a, b of G we
put in ω1 elements of Q joined to them both if
a, b are joined in G, and ω elements if a, b are
not joined in G.

The map G 7→ MG preserves cardinality and
non-isomorphism, and Graph is bad. So (the
class of models of) T is bad.
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Shelah isolated the feature of T which makes
it bad. Complete first-order theories with this
feature are said to have DOP; those without
it have NDOP.

Given sets B ⊆ C of elements of a model, let
p be a (complete) type over C. We say p is
orthogonal to B if p is orthogonal to every type
over C which doesn’t fork over B.

The defining property of DOP (cf. Lascar 1985):
There are sets A,B1, B2 in a model, with A ⊆
B1 ∩B2 and B1, B2 independent over A, and a
type p over A, such that p is orthogonal to B1
and to B2 but not to B1 ∪B2.
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A theory T has the OTOP (the Omitting Types
Order Property) if there is a type p(x̄, ȳ, z̄) such
that for every λ and every 2-ary relation R on
λ, there is a model M of T with elements āi
(i < λ) such that for all i, j < λ,

iRj ⇔ p(āi, āj, x̄) is realised in M.

A theory without the OTOP has the NOTOP.

Examples of OTOP without DOP are not sim-
ple to describe.
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Example : a deep theory

F a 1-ary function symbol, c a constant. The
theory T says:

∀x (Fn(x) = x↔ x = c) (n > 0)

∀x∃≥ny F (y) = x (n < ω).

Define the rank of an element a in model M :

rank(a) ≥ 0⇔ |F−1(a)| ≥ ω1.

rank(a) ≥ γ+1⇔ there are uncountably many
b of rank ≥ γ in F−1(a).

rank(a) ≥ δ (limit) ⇔ rank(α) ≥ γ for all γ < δ.

For any nonempty subset Y of a cardinal λ,
make a model MY by putting immediately above
element c elements of just the ranks in Y .
This gives 2λ models of cardinality λ.
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Shelah isolated the feature of this example that
makes it bad.

If T is superstable without DOP, then enough-
saturated models of T have a tree structure,
which can be ranked like the example above.

The depth of T is the least upper bound of the
ranks of models.
We say T is deep if its depth is ∞, or equiva-
lently, ≥ ω1.
We say T is shallow if its depth is at most
countable.
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Shelah’s Main Gap (for countable superstable
theories)
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WARNING . If T is superstable without DOP
or OTOP, and depth(T ) ≥ 2, then for every
infinite α,

I(ωα, T ) ≥ min(2ωα,2|α|).

There is a closed unbounded class C of cardi-
nals

λ = ωα = |α|,

so for any λ in C,

I(λ, T ) = 2λ

making T bad on a closed unbounded set.

Shelah (1985): ‘Thus if one is able to show
that the theory has 2ℵγ models of power ℵγ
this establishes non-structure.’
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Question : Does the argument in the case of
deep theories show non-structure, or just many
models?

To make this a question in mathematics and
not in philosophy, one should:

• look at well-established structure theorems,

• isolate mathematical features which make
these structure theorems good,

• try to see what classes of structures have
these features.
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Example of structure theorem : Totally pro-
jective abelian p-groups for a fixed prime p

(Fuchs, Infinite Abelian Groups II Chapter XII)

An abelian p-group A is totally projective if for
all ordinals α and all abelian groups C,

pαExt(A/pαA,C) = 0.

The Ulm-Kaplanskysequence Γ(A) of an abelian
p-group A of cardinality ≤ λ (infinite) is a well-
ordered sequence of length < λ+; its terms
are the dimensions of certain Fp-vector spaces
extracted from A.

The structure theorem of Crawley, Hales and
Hill says that two totally projective abelian p-
groups are isomorphic if and only if they have
identical Ulm-Kaplansky sequences.

NB: The class of totally projective abelian p-
groups is bad.
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The Ulm-Kaplansky sequence of a totally pro-
jective abelian p-group A of cardinality λ is de-
termined by the Lλ+,λ-theory Thλ+,λ(A) of A.

This suggests a new notion of bad class:
K is bad’ if it contains two structures A,B of
cardinality λ such that

A 6∼= B, Thλ+,λ(A) = Thλ+,λ(A).

A theory is called classifiable if it is unsuper-
stable and has NDOP and NOTOP, unclassi-
fiable otherwise.

Shelah (1987 and Classification Theory, The-
orem XIII.1.1): The following are equivalent,
for any countable theory T and any cardinal
λ > 2ω:

• T is classifiable.

• Any two L∞,λ-equivalent models of T of
cardinality λ are isomorphic.
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Have we drawn the class of bad’ structures too
narrowly?

The Ulm-Kaplansky invariants of a totally pro-
jective abelian p-group have other good prop-
erties, e.g. they are absolute under extensions
of the set-theoretic universe that fix cardinali-
ties (such as ccc forcing).

Satisfying a fixed sentence of L∞,λ is not nec-
essarily preserved under ccc forcing.
For example when λ > ω we can express that a
model of second-order number theory contains
only constructible sets.
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Baldwin, Laskowski and Shelah (1993): If T is
unclassifiable then there are two nonisomorphic
models of T that can be made isomorphic by
ccc forcing.

Certain classifiable theories have this property
too!

Laskowski and Shelah (1996): If T is super-
stable but not ω-stable, and has at most count-
ably many n-types over ∅ for each n, then by
ccc forcing we can create two models of T that
are nonisomorphic but can be made isomorphic
by further ccc forcing.
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