Classification over a predicate Wilfrid Hodges Queen Mary, University of London March 2001

Some ways in

Wilfrid Hodges, *Model Theory*, Cambridge UP 1993, section 12.5 Relative Categoricity.

Anand Pillay and Saharon Shelah, *Classification over a Predicate I*, Notre Dame Journal of Formal Logic 26 (1985) 361–376.

Saharon Shelah, Classification over a Predicate II, in Shelah, Around Classification of Models, Lecture Notes in Mathematics 1182, Springer 1986.

(Note also Shelah 322 unpublished, *Classification* over a *Predicate*, 1989.)

David Evans, Dugald Macpherson and Alexander Ivanov, Finite Covers, in Evans ed., Model Theory of Groups and Automorphism Groups, Cambridge UP 1997. T is a complete theory in a first-order language L^+ , one of whose symbols is the 1-ary relation symbol P.

L is a first-order language $\subseteq L^+$ not containing P.

Assumption One: For every model M of T, the *L*-reduct of M has a substructure whose elements form the set P^M ;

we call this substructure M_P , in words the P-part of M.

Assumption Two (Relative categoricity): If $M \equiv N$ and $M_P = N_P$ then there is an isomorphism i^+ from M to N which is identity on M_P .

Equivalent: If $M \equiv N$ then every isomorphism $i: M_P \to N_P$ extends to an isomorphism $i^+: M \to N$.

When $T \vdash \forall x \ Px$, relative categoricity reduces to implicit definability (Beth).

When $T \vdash \forall x \neg Px$, it reduces to the uninteresting notion of categoricity,

but as usual we can ask about models of a particular cardinality κ and then it reduces to κ -categoricity.

Either way, the natural questions are about definability of M in terms of M_P .

Theorem (Gaifman 1974). Suppose T is rigidly relatively categorical (i.e. the isomorphism i^+ in Assumption Two is unique), M_P is always infinite and L^+ is countable. Then M is uniformly definable over M_P , i.e.

- Every element of M is definable in M with parameters in M_P ;
- (Uniform Reduction, = Shelah's Hypothesis 1.1) For every $\phi(\bar{x})$ in L^+ there is $\phi^P(\bar{x})$ in L such that for all models M of T and tuples \bar{a} in M_P ,

$$M \models \phi(\bar{a}) \iff M_P \models \phi^P(\bar{a}).$$

Much work has been about deriving versions of Gaifman's conclusions from weaker hypotheses.

Uniform reduction

We say T is (λ, μ) -categorical if

- T has (λ, μ) -models, i.e. models M with $|M_P| = \lambda$ and $|M| = \mu$.
- If M, N are (λ, μ)-models of T with the same P-part, then there is an isomorphism from M to N which is identity on the P-part.

Thus relative categoricity and '*P*-part always of cardinality at least $|L^+|$ ' implies (λ, λ) -categoricity for all $\lambda \geq |L^+|$.

Theorem (Pillay and Shelah). If T is (λ, λ) -categorical for some infinite λ then T has uniform reduction.

But in fact

Theorem. If T is the theory of an abelian group with a subgroup picked out by P, and T is (λ, μ) -categorical for some λ, μ , then T has uniform reduction.

The proof uses Feferman-Vaught properties of modules; how far does the result extend?

Defining elements of M over M_P

If M is not rigid over M_P , Gaifman's definability result obviously fails.

But we can still ask whether M is a reduct of a definable extension of M_P in Gaifman's sense.

Answer: No.

Trivially every automorphism of M restricts to one of M_P ,

 $\sigma : \operatorname{Aut}(M) \to \operatorname{Aut}(M_P).$

By the relative categoricity property, there is a one-sided set-theoretic inverse

 $\iota : \operatorname{Aut}(M_P) \to \operatorname{Aut}(M), \ \sigma \iota = 1_{M_P}.$

If M is a reduct of a definable extension of M_P then ι can be chosen to be a group homomorphism, i.e. σ is a split surjection.

Then there are easy counterexamples, e.g.

$$M = \bigoplus_{\omega} \mathbb{Z}/4\mathbb{Z},$$

$$M_P = \bigoplus_{\omega} \mathbb{Z}/2\mathbb{Z}.$$

For proof that σ doesn't split in this case, see the literature on covers, e.g.

Gisela Ahlbrandt and Martin Ziegler, What's so special about $(\mathbb{Z}/4\mathbb{Z})^{(\omega)}$?, Archive for Mathematical Logic 31 (1991) 115–132.

David Evans, Wilfrid Hodges and Ian Hodkinson, Automorphisms of bounded abelian groups, Forum Mathematicum 3 (1991) 523–541. We can also ask whether in general

(Shelah's Hypothesis 1.2) Every type over M_P in M is definable with parameters in M_P ;

i.e. for every type $p(\bar{x})$ over M_P and every formula $\phi(\bar{x}, \bar{y})$ of L there is $\phi^*(\bar{y})$ with parameters from M_P such that whenever \bar{b} satisfies p,

$$M \models \phi(\bar{b}, \bar{c}) \iff M \models \phi^{\star}(\bar{c}).$$

This is guaranteed if T is a stable theory.

Theorem (Shelah). If T is relatively categorical then Hypothesis 1.2 holds.

In fact Shelah proves much more along the same lines, often using set-theoretic assumptions.

Transfer results

Saharon Shelah and Bradd Hart, Categoricity over Pfor first order T or categoricity for $\phi \in L_{\omega_1\omega}$ can stop at \aleph_k while holding for $\aleph_0, \ldots, \aleph_{k-1}$, Israel Journal of Mathematics 70 (1990) 219–235. (Subtitled 'To make Leo happy'.)

If T is the theory of an abelian group with P picking out a subgroup,

then all reasonable transfer theorems hold, e.g. (λ, μ) -categoricity with $\omega \leq \lambda < \mu$ implies (λ', μ') -categoricity whenever $\omega \leq \lambda' < \mu'$.

But the proof (Hodges, unpublished) uses a lot of abelian group theory–e.g. Kaplansky-Mackey theorem, cotorsion groups.

So we have little idea what general theorems about transfer can be proved.

For T describing pairs of abelian groups as above, Anatolii Yakovlev has unpublished notes on which pairs give rise to relatively categorical theories. (Not many do.)