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Leon Henkin (1961) introduced quantifiers as

follows:

(∀x) (∃v)
(∀y) (∃w)

}

φ(x, y; v, w).

The intended meaning is:

There are functions f, g such that

(∀x)(∀y) φ(x, y; f(x), g(y)).

Intuitively: For all x and y there are v

depending only on x and w depending only on

y such that φ(x, y; v, w).
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Example (Ehrenfeucht 1958):

(∀x) (∃v)
(∀y) (∃w)

}

[((x = y) ↔ (v = w)) ∧ φ]

says

(∃f)(∃g)[(∀x)(∀y)((x = y) ↔ (f(x) = g(y))

∧(∀x)(∀y)φ(x, y; f(x), g(y))]

i.e.

(∃ injective f)(∀x)(∀y)φ(x, y; f(x), f(y))

But

(∃z)(∃ injective f)(∀x)((Rx → Rf(x))

∧f(x) 6= z ∧Rz)

holds if and only if R is infinite.
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FACT (Walkoe and Enderton independently,

1970)

There is an algorithm for translating each

sentence

(∃f1) . . . (∃fm)φ

with φ first-order, to a sentence

(∀x11) . . . (∀x1n) (∃v1)
. . . . . .

(∀xm1) . . . (∀xmn) (∃vm)











ψ

with ψ first-order, which has exactly the same

models.
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Blass and Gurevich (Henkin quantifiers and

complete problems, Annals of Pure and

Applied Logic 32 (1986) 1–16) study Henkin

sentences on finite structures, allowing

existential quantifiers over truth-values

instead of elements.

FACT (Blass and Gurevich)

‘Almost any [branching] quantifier, applied to

quantifier-free first-order formulas, suffices to

express an NP-complete predicate.

The remaining non-linear quantifiers express

exactly co-NL predicates.’

5



Jaakko Hintikka 1973 gives a game semantics

for first-order logic, using players ∀, ∃.

Given a structure A:

∀x means player ∀ chooses an element a of A

for x.

∃x means player ∃ chooses an element a of A

for x.

(φ0 ∧ φ1) means player ∀ chooses one of 0,1.

(φ0 ∨ φ1) means player ∃ chooses one of 0,1.

¬φ means the players change places.

P(x0, . . . , xn−1) is a win for ∃ if (a0, . . . , an−1)

is in PA, and a win for ∀ otherwise.
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THEOREM. A sentence φ is (Tarski-)true in

a structure A if and only if player ∃ has a

winning strategy for the game G(φ,A) just

described.

Remarks:

1. The clause for ¬ works only because the

game is determined (by the Gale-Stewart

theorem, since it has finite length).

2. Unlike the traditional Tarski semantics, the

game semantics gives no direct interpretation

for formulas that are not sentences.

(It is not ‘compositional’—though this term

has led to various confusions.)
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In about 1990, Hintikka suggested how to

adapt game semantics to Henkin’s logic.

‘y is independent of x’ is taken to mean: a

strategy for choosing an element for y must

not depend on the element chosen for x.

(So games are of imperfect information.)

Thus for Henkin’s sentence, Hintikka writes

(∀x)(∃v)(∀y)(∃z/∀x)φ.

A strategy for ∃ is exactly a pair of functions

f(x), g(y);

it is winning if and only if the Henkin

condition on Skolem functions holds.
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Example 1

(∀x)(∃y/∀x)x 6= y

Neither player has a winning strategy for this

sentence in a structure of more than one

element.

Hence Hintikka’s semantics can’t express

negation.

In particular there is no game that a player

wins if and only if the Henkin sentence is

false.

So Hintikka has to restrict where negation

can occur.

9



Example 2

(∀x)(x = 0 ∨ (∃y/∀x)y 6= x).

Winning strategy for ∃:

At ∨, if 0 was chosen for x, choose ‘x = 0’;

otherwise choose ‘(∃y/∀x)y 6= x’.

At (∃y/∀x), choose 0.

NOTE: ∃ uses her choice at ∨ to send a

signal to her choice for y.

(Hodges:) Therefore we should allow ∃ to use

her own earlier choices to signal to later ones.
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Example 3

(∀x)(∃y)(∃z/x) x = z.

As before, ∃ has a winning strategy by

signalling to herself.

In this syntax, strategies for a player can use

choices of either player at earlier variables x,

except where these earlier variables x are

slashed.
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Two proposals of Abramsky

1. ‘If information is hidden at some stage, it

should remain hidden.’

This blocks the example above;

but in fact it reduces Hintikka’s language to

ordinary first-order.

2. ‘The interpretation of the Henkin

quantifier should be symmetrical for ∀ as well

as ∃, i.e. ∀ should be able to choose which

branch to take first. This would add a

multiplicative feature to the logic.’

This sentence does it:

((∀x)(∃v)(∀y/v)(∃w/xv)φ

∧

(∀y)(∃w)(∀x/w)(∃v/yw)φ)
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In 1996 I gave a semantics for this extension

of Hintikka’s logic, that interprets formulas by

induction on their complexity, like the usual

Tarski semantics.

Purposes:

• To understand the logic.

• To see how to restore classical negation.

• To refute Hintikka’s repeated claim that

no such semantics can be found.

In 1997, urged by Sandu, I adapted this

semantics to Hintikka’s syntax. (Not trivial

but not hard.)
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Given a formula φ(x, y, . . .), we don’t (as in

Tarski) ask what assignments of elements to

variables satisfy the formula.

Instead we ask what nonempty sets of

assignments satisfy it uniformly (i.e. in a way

that doesn’t depend on hidden information).

Call such a set a trump.

A cotrump is a set with the dual property

(corresponding to swapping ∀ and ∃).

So the semantics for φ consists of an ordered

pair of disjoint sets of nonempty sets of

assignments, both closed under subsets.

Over a finite structure, we can show that

every such ordered pair is the interpretation

of some formula.
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In the case of φ(x) with just x free, the

number of such pairs in a structure of n

elements is as follows:

n number of pairs

1 3
2 11
3 55
4 489
5 17,279
6 15,758,603
7 4,829,474,

397,415
8 112,260,874,

496,010,913,
723,317

(Joint with Peter Cameron, using a 200-hour

calculation on a Cray)
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A general theorem shows this is the smallest

semantics that will make enough distinctions

between formulas.

For Hintikka’s logic we need only trumps, and

the corresponding figures tend to half those

above as n tends to ∞.

The formulas which need this many possible

interpretations are all (essentially) of the

original Henkin form,

but further sentences are needed to show

that no simpler semantics will work.

16



Related work in progress:

Caicedo and Krynicki give a prenex normal

form for Hintikka’s logic.

Väänänen gives a game-theoretic semantics

for Hintikka logic using games of perfect

information, but the players choose sets of

assignments rather than single assignments.

Abramsky sketches a proof-theoretic

semantics for a variant of Hintikka’s logic.
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