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Many constructions F in algebra and analysis take the
form:

For every structure A in a class K closed under
isomorphism,
the structure F(A) extends A and is determined up to
isomorphism over A,
i.e. if A, C ∈ K with an isomorphism f : A → C,
then there is an isomorphism g : F(A) → F(C)
extending f .

Typical examples:
A a field and F(A) the algebraic closure of A;
A a left R-module and F(A) the injective hull of A.
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Also A a poset and F(A) its MacNeille completion.

Given X ⊆ A, put

X̄ = {a ∈ A : (∀b ∈ A) ((∀c ∈ X) (c � b) → (a � b))}

Then F(A) = {X ⊆ A : X̄ = X}, a �→ {a}.

From this explicit definition it’s clear that automorphisms
of A extend to automorphisms of F(A).

4

A non-example:
A a formally real field and F(A) a real closure of A.

This is not a construction in our sense.
E.g. if A = Q(X, Y),
then in F(A) we have exactly one of X < Y and Y < X,
so no automorphism of F(A) switches X and Y.
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In a set-theoretic universe, since K is a proper class
F is a restricted global choice function,
choosing a value F(A) for each A ∈ K.

Michael Makkai, ‘Avoiding the axiom of choice in general
category theory’, J. Pure and Applied Category Theory,
proposes the notion of ‘anafunctor’ to avoid having to
choose a value F(A) for each A.

Paraphrasing a comment of Paul Taylor:
This is poorly motivated. Category theory should not be
understood platonically, so the truth of the axiom of
choice (global or local) is irrelevant.

We will ignore these foundational questions.
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Often F can be defined outright within ZF set theory.

Trivial example: K the class of structures ∼= Z(2),
F(A) ∼= Z(4) with A = 2F(A).

Take C the cyclic group with elements 0, 1, 2, 3.
Given any A ∈ K, there is a unique group embedding
h : A → C.
In set theory we can define F(A): replace 0, 2 in C by their
pre-images under h, and (if necessary) replace 1, 3 by
〈A, 1〉, 〈A, 3〉.
By contrast no definition of F is known when A ∼= Z(8),
F(A) ∼= Z(16) with A = 2F(A).



7

Historical reminiscence: This phenomenon first came to
light in model theory in the 1970s.
In 1980 I spoke about it at Bowling Green Ohio,
using an example with 625 elements.
Michael Morley in the audience said

‘That’s impossible. There aren’t any finite structures
in model theory’.

(His neighbour Andreas Blass calmed him down.)

Until the mid 1970s model theory was about the
compactness theorem, which is trivial for finite structures.
Definability theory is not always about compactness,
so it can be nontrivial for finite structures.
This became very clear in the 1980s, thanks to work of
Lachlan, Zilber etc.
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We identify a crucial difference between the cases
Z(2) �→ Z(4) and Z(8) �→ Z(16).

Write Aut(A) for the group of all automorphisms of A,
and Aut(F(A))(A) for the group of all automorphisms of
F(A) that fix A setwise.

Each automorphism α ∈ Aut(F(A))(A) restricts to an
automorphism ν(α) of A, yielding a homomorphism

ν : Aut(F(A))(A) → Aut(A).

By definition of constructions, ν is surjective.

We say ν splits if there is a ‘splitting’ homomorphism
σ : Aut(A) → Aut(F(A))(A) with νσ = 1Aut(A).
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We say the construction F is split (or natural) if for every A
in the domain of F, ν as above splits.

Fact. F : Z(2) �→ Z(4) is split.

Note that in this case Aut(F(A))(A) = Aut(F(A)),
since A is a characteristic subgroup of F(A).
(And similarly for Z(8) �→ Z(16).)

Now Aut(Z(2)) is trivial, so the required splitting
σ : Aut(Z(2)) → Aut(Z(4)) is the identity. �
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Fact. F : Z(8) �→ Z(16) is not split.

Here Aut(Z(8)) = Z(2) ⊕ Z(2) and
Aut(Z(16)) = Z(4) ⊕ Z(2).
So we have a short exact sequence

0 −→ Z(2) −→ Z(4) ⊕ Z(2)
ν−→ Z(2) ⊕ Z(2) −→ 0

If ν splits then Z(4) ⊕ Z(2) = Z(2) ⊕ Z(2) ⊕ Z(2), which is
false.

�
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Theorem. Suppose that all structures in the domain K of
F are isomorphic, F is split, and there exists a definable
pair (C, F(C)) with a definable splitting
σ : Aut(C) → Aut(F(C))(C).
Then F is definable.

Proof. Given A ∈ K, let G be the set of all isomorphisms
g : A → C.
For each g ∈ G let F(C)g be a distinct copy of F(C).
Define

e : A →
∏
g∈G

F(C)g, e(a)g = g(a).

Then e is a definable embedding.

12

We will define a substructure of
∏

g∈G F(C)g isomorphic to
F(C).
We say x ∈ ∏

g∈G F(C)g is symmetric if for all f , g ∈ G,

xg = σ(gf−1)xf .

This makes sense since gf−1 ∈ Aut(A).
We define F(A) to be the set of symmetric elements in∏

g∈G F(C)g

(or strictly this set with elements in image of e replaced by
their pre-images etc. etc.).

Various things to check:
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(1) F(A) is a substructure of
∏

g∈G F(C)g.

E.g. if A is an abelian group and x, y are symmetric
elements, we want x + y symmetric, thus:

(x + y)g = xg + yg = σ(gf−1)xf + σ(gf−1)yf

= σ(gf−1)(xf + yf )

because values of σ are in Aut(F(C))(C)

= σ(gf−1)(x + y)f .

14

(2) e(A) ⊆ F(A).

Suppose a ∈ A. We must show e(a) is symmetric, i.e.
g(a) = σ(gf−1)f (a) for all f , g ∈ G.
Since f (a) ∈ C (or strictly in the image of C in F(C)f ),

σ(gf−1)f (a) = (νσ)(gf−1)f (a)

and this by the splitting

= 1A(gf−1)f (a) = gf−1f (a) = ga.
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(3) For each g ∈ G, the map x �→ xg is an isomorphism
from F(A) to F(C) extending g : A → C.

The map is clearly a homomorphism. We must show it is
a surjective embedding.

Surjective: for each d ∈ F(C) and each f define
xf = σ(fg−1)d.
Then x is symmetric since σ is a group homomorphism,
and xg = d since σ(1C) = 1F(C).

Embedding: suppose x, y are symmetric and xg = yg.
Then for all f ,

xf = σ(fg−1)xg = σ(fg−1)yg = yf

(and similarly with relations). �
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By contrast no non-split construction is known to be
definable. So a natural conjecture is:

A construction is definable if and only if it is split.

But caution: in the constructible universe there is a global
choice function so all constructions are definable.
So the conjecture has to say something like:

(Main conjecture) If a construction F is
definable-up-to-isomorphism in ZFC, and is non-split
(provably in ZFC),
then there is a model of ZFC in which F is not
definable.

(What about parameters? For simplicity we ignore them
here.)
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The conjecture is true for ZFC with urelements.
(Hodges and Shelah, ‘Naturality and definability 1’,
Journal of London Mathematical Society 33 (1986) 1–12.)

For ZFC it is still open, though Shelah has shown (in
preparation) that there is no model of ZFC in which the
definable constructions are exactly the split ones.
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Let ν : G → F be any surjective group homomorphism.
By a weak splitting of ν we mean a map σ : F → G such
that

� νσ = 1F and
� the composed map

F σ−→ G nat−→ G/Z(G)

(where Z(G) is the centre of G) is a homomorphism.
We say that ν weakly splits if it has a weak splitting σ.
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Fact. If σ is a weak splitting of ν and αn = 1 in F then
σ(α)n is central in G.

Thus writing z, z′ for elements of the centre of G,

σ(1) = σ(12) = σ(1)2.z.

Hence 1 = σ(1).z and so σ(1) is central.

If αn = 1 in F then

z = σ(1) = σ(αn) = σ(α)n.z′

for some central z, z′, and so σ(α)n is central. �
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We say that a construction F is weakly split if for every A in
the domain of F,
ν : Aut(F(A))(A) → Aut(A) weakly splits.

Theorem. There is a model of ZFC in which every
definable construction is weakly split.
(Hodges and Shelah, in preparation.)

So if (provably in ZFC) a construction F is not weakly
split, then there is no formula which (provably in ZFC)
defines F.
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Let G be the multiplicative group of 3 × 3 upper
unitriangular matrices over the ring Z/(8Z),
F the corresponding group over Z/(2Z).
We show the natural ν : G → F has no weak splitting.

Let g1, g2 be the two matrices

g1 =

⎛
⎝

1 1 0
0 1 0
0 0 1

⎞
⎠ , g2 =

⎛
⎝

1 0 0
0 1 1
0 0 1

⎞
⎠

in G, and f1 the homomorphic image of g1 in F.
Then f 2

1 = 1.
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For contradiction suppose σ is a weak splitting of ν.
Consider h1 = σ(f1) ∈ G.
By above, h2

1 is central in G, so h2
1 and g2 commute.

But by construction h1 = g1 + 2M for some matrix
M ∈ Z(8)3×3, so h2

1 = g2
1 + 4N for some matrix N.

So
h2

1g2 = g2
1g2 + 4Ng2 ∈ g2

1g2 + 4Z(8)3×3

and similarly

g2h2
1 ∈ g2g2

1 + 4Z(8)3×3.
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So if h2
1 and g2 commute then

g2
1g2 − g2g2

1 ∈ 4Z(8)3×3.

But

g2
1g2 − g2g2

1 =

⎛
⎝

0 0 2
0 0 0
0 0 0

⎞
⎠ /∈ 4Z(8)3×3.

Contradiction. �
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Hence there is no provably definable construction A �→ B
where Aut(A) = F and Aut(B) = G as above.

Choose algebraic number fields k1 ⊆ k2 with these
automorphism groups over Q, a Galois extension.
(Possible by Shafarevich, since G is a soluble group.)
Then the construction k1 �→ k2 is not provably definable.

Hence algebraic closure for fields is not provably
definable.
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A similar argument shows that divisible hull of abelian
groups is not provably definable.

But we still don’t know about the construction

Z(8) �→ Z(16).

Here ν weakly splits for the trivial reason that
both automorphism groups are abelian.

In particular the definability of the construction
Fp8 �→ Fp16 (p a prime) is open.
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I still conjecture that there is a model of ZFC in which
every definable construction is split.

The proof of the result with weak splittings uses a very
indirect combinatorial argument due to Shelah.
It works but I can’t offer any explanation why it’s the
right approach to take.


