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If you have studied Calculus from an American university textbook,
you have almost certainly seen the diagram

−3 −2 −1 0 1 2 3

The diagram represents the real numbers (in other words the numbers with
decimal expansions), arranged in order from smaller to greater. The more
strenuous textbooks add some other numbers to the diagram, for example
e a little to the left of 3 and π a little to the right of it. These two numbers
are irrational; in other words they can’t be written as m/n where m and n
are integers. Probably the first irrational number to be discovered was

√
2,

the square root of 2, somewhere between 1 and 2 in the diagram. Medieval
mathematicians regarded irrational numbers as substandard and used in-
sulting names for them, such as ‘surd’, which is the Latin for deaf-mute.

A long time ago people realised that negative real numbers don’t have
real square roots; for example no real number is a solution of the equation
x2 + 1 = 0. In 1545 Girolamo Cardano published a formula for calculating
solutions of cubic equations. The cubic equation

x3 − 7x + 6 = 0

has solutions x = 2, 1 and −3, but Cardano’s rule for solving it requires us
to use the square root of −60 during the calculation. This is not a special
case; Cardano’s rule involves square roots of negative numbers whenever
the cubic has three distinct real roots. Square roots of negative numbers
were even more suspect than irrational numbers, so they became known as
‘imaginary’. But Cardano’s rule showed that we need them.
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By the end of the eighteenth century mathematicians had worked out
sensible ways of handling imaginary numbers. They considered complex
numbers a + b

√
−1 where a and b are real. They knew how to add, sub-

tract, multiply and divide complex numbers, and how to picture them in
the plane. Cotes and Euler had established some laws involving them, for
example

eπ
√
−1 = −1.

Cauchy was about to extend the integral and differential calculus to com-
plex numbers, and he would show that this extended calculus gives pow-
erful methods for handling the real numbers themselves.

Not everybody was happy with these developments. If −1 doesn’t
have a square root, then the whole theory of complex numbers is based
on a pretence. Some people (for example Augustus De Morgan’s father-
in-law William Frend) seized the opportunity to point out that you can’t
take something away from nothing, so negative numbers are a pretence
too. How to answer these objections?

§§§

In 1834 George Peacock [10] proposed an answer. Unlike earlier math-
ematicians, he didn’t distinguish between numbers that exist and numbers
that don’t. Instead he distinguished between symbols on the one hand, and
their interpretations on the other. The symbol 1 is just a mark; we usually
interpret it as standing for the number one. This is a subtle distinction,
since both the symbol and the number are written the same way. But the
rest of our story depends on it.

Here is one of Peacock’s remarks about his distinction:

To define, is to assign beforehand the meaning or conditions of
a term or operation; to interpret, is to determine the meaning of
a term or operation conformably to definitions or to conditions
previously given or assigned. It is for this reason, that we define
operations in arithmetic and arithmetical algebra conformably
to their popular meaning, and we interpret them in symbolical
algebra conformably to the symbolical conditions to which they
are subject. ([10] p. 197 footnote)

What is Peacock saying here? What does he mean by ‘beforehand’ and
’previously’?
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Peacock’s idea is this. We have the natural numbers 0, 1, 2 . . . , and
we can introduce symbols that stand for natural numbers and operations
on natural numbers. Then we can use these symbols to write down laws
(Peacock’s ‘conditions’) that are true for the natural numbers. For example
x+y = y +x; when we add two natural numbers, the order doesn’t matter.
Another law is

x + (y − z) = (x + y)− z.

This doesn’t always make sense for the natural numbers; for example 1 +
(1 − 4) is not a natural number. But whenever both sides do make sense,
the law holds, so we count it as a law of the natural numbers. This is a
case of ‘beforehand’, because the natural numbers came before the laws;
we discovered the laws by studying the natural numbers.

On the other hand, take the laws above and forget that they came from
the natural numbers. Instead, regard them as referring to the complex num-
bers and the operations +, − etc. on complex numbers. Then again they
come out true. This time we have ‘interpreted’ the symbols and the laws
that go with them. The laws came first (Peacock’s ‘previously’), then the in-
terpretation. Strictly of course we could choose to use the natural numbers
again instead of the complex numbers, and so the natural numbers are also
an interpretation. But they have a privileged position as the original mean-
ings of the symbols; in today’s language Peacock would have said that they
are the ‘intended interpretation’ of the symbols and the laws.

The advantage of the complex numbers over the natural numbers (said
Peacock) is that the operations make sense more generally. In the natural
numbers we can consider

√
4 but not

√
3. In the real numbers

√
3 exists but√

−3 doesn’t. In the complex numbers
√
−3 exists. Another way of putting

this is to say that as we proceed from the natural numbers to the integers,
the rational numbers, the real numbers and the complex numbers, more
and more equations become solvable. The complex numbers are a natural
stopping place, because in them every algebraic equation with at least one
variable has a solution, as Gauss had proved in 1799. But they are not
necessarily the end of the series, because

There is no necessary limit to the multiplication of such signs.
([10] p. 201)

For example we might add exponentiation, 2x. Are there equations in this
operation that have no solution in the complex numbers but could have
solutions added to the complex numbers?

Peacock also observed that we can do a third thing: forget the natural
numbers, don’t provide a new interpretation, but simply calculate with the
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symbols according to the laws. He called this ‘symbolical algebra’, as op-
posed to the ‘arithmetical algebra’ that studies the natural numbers. He
related symbolical algebra to interpretations by observing that if we prove
something in symbolical algebra, what we prove must be true in any in-
terpretation of the symbols and laws. If our interpretation makes the laws
true, then it also makes true anything else that follows from the laws.

Peacock was ahead of his time. His immediate successors developed
his symbolical algebra, but they sidestepped two other parts of his picture.
First they ignored the interpretations; if we know how to calculate conse-
quences of our laws by symbolical algebra, what does it add to say that the
laws can be interpreted? (George Boole in 1847 was an honourable excep-
tion. He refined Peacock’s notion to introduce the concept of a ‘system of
interpretation’; we will meet it again below.) Second they argued that there
are worthwhile systems of symbols and laws that don’t come from the nat-
ural numbers; for example in 1844 William Hamilton invented quaternions,
in which the law xy = yx is simply false. Actually Peacock himself should
have noticed that the law

√
x2 = x is true for the natural numbers (wher-

ever it makes sense) but false for the real numbers; take x = −1.

§§§

Peacock’s notion of interpretations never really died out, but it was kept
alive by a different kind of question. In the first half of the nineteenth
century the geometers were entering their own crisis of split meanings.
Geometry had previously been about the line, the flat plane and three-
dimensional space. Now, thanks to Gauss and Riemann, one had a geom-
etry of the surface of the sphere or a cylinder, and some strange imaginary
spaces of ‘negative curvature’, and any number of other possibilities. So it
was natural to ask which systems of geometric propositions imply which
other geometric propositions. The old question whether Euclid’s parallel
postulate was derivable from his other postulates was just one example of
this kind of question. A methodology developed for answering such ques-
tions. Suppose we have a system T of propositions that hold for a certain
space, and we want to know whether these propositions imply some other
proposition φ. One way of showing that they don’t is to provide a Peacock-
style reinterpretation of the system of propositions T , and show that under
this reinterpretation the proposition φ is false. By the 1920s these reinter-
pretations had become known as ‘pseudospaces’ or ‘pseudomodels’. To
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do their job they didn’t even need to be spatial; they could be abstract or
numerical.

By this date George Peacock was long since forgotten. Nobody dis-
cussed his views on the privileged position of arithmetic, or his idea of
adding new elements to a structure to make more equations have solutions.
Peacock himself left his post at Cambridge University to become Dean
of Ely Cathedral in 1839—apparently he hadn’t been a popular lecturer—
and he died in 1858 leaving no offspring. But his fundamental distinction
between symbols and interpretations grew steadily in importance. One
reason for this was that mathematicians had begun to consider classes of
‘structures’. A structure consists of a set of objects and certain labelled op-
erations and relations on them; typical examples are groups and fields.

Essentially a structure is a system of interpretation in Boole’s sense. The
set of objects of the structure provides the range of allowed interpretations
for the variables. Boole suggested calling this set the ‘universe’, borrowing
a term from the logic of his friend Augustus De Morgan. This name has
survived, though the universe of a structure is also known today as its ‘do-
main’. We speak of the elements of the universe as ‘elements of the struc-
ture’, and the ‘cardinality’ of the structure is the number of elements in its
universe. The operations of the structure are (in Peacock’s sense) interpre-
tations of their labels. An ‘isomorphism’ from a structure A to a structure
B is a bijective function f from the universe of A to the universe of B, so
that if a relation of A holds between elements a1, . . . , an of A, then the re-
lation with the same label holds in B between the corresponding elements
f(a1), . . . , f(an), and vice versa from B to A. (For this definition, relations
include equations.)

Though the concept itself is older, strictly the name ‘structure’ is twenti-
eth-century. Structures were known in the late nineteenth century as ‘sys-
tems’, or more pedantically ‘systems of objects’ (in German Systeme von
Dingen) to distinguish them from the ‘systems of axioms’ which were the
descendants of Peacock’s ‘conditions’.

Peacock hadn’t thought in terms of systems/structures. For him the
world of mathematics consisted of numbers, and the processes that he
described were about how to add new kinds of number. But in the new
framework the natural numbers were a structure, the integers another, the
rational numbers another, the reals another and the complex numbers an-
other again. I will refer to this sequence as ‘Peacock’s hierarchy’. Strictly, to
make the real numbers into a structure we have to decide what operations
we include; the set of symbols for these operations is then called (in mod-
ern terminology) the ‘signature’ of the structure. For example the natural
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numbers might have a signature consisting of the symbols +, ×, 0 and 1;
passing to the integers we can add − to the signature, and so on.

In terms of structures one could also separate two parts of Peacock’s pic-
ture. We ‘expand’ a structure by keeping its elements the same but adding
new operations or relations. We ‘extend’ a structure by keeping the sig-
nature the same but adding new elements. The resulting new structure is
called an ‘extension’ of the old one and the old one is called a ‘substructure’
of the new. We write A ⊆ B to express that the structure B is an extension
of the structure A. Passing from the natural numbers to the complex num-
bers involved both expansions and extensions.

Peacock’s fundamental distinction between symbols and their interpre-
tations got further reinforcement from the realisation in the late nineteenth
century that ‘conditions’ (or propositions or axioms) don’t have to be equa-
tions. Any true sentence about the natural numbers, even Fermat’s Last
Theorem, can be regarded as an axiom if we can write it precisely using
only the allowed formal symbols. In the late 1910s David Hilbert’s lec-
tures at Göttingen gave popularity to the idea that any sentence of first-
order logic could be taken as an axiom, at least if it was consistent. Besides
the equality, variables and function and constant symbols that Peacock al-
lowed, first-order languages permit symbols for relations, together with

¬ ‘not’, ∧ ‘and’, → ‘if . . . then’, ∀ ‘for all’, ∃ ‘there exists’.

Grumpy old men like Gottlob Frege made peevish remarks about idle gen-
eralisations and misuse of the word ‘axiom’, pretending not to realise that
the new freedoms were bound to stimulate new methods for handling
them.

§§§

If we allow our axioms to be any first-order sentences, then one of Pea-
cock’s claims goes out of the window. It’s by no means true that all the
axioms that hold for the natural numbers hold for the larger number sys-
tems, even if we restrict the operations to plus and times. For example the
first-order sentence

∀x (x2 6= 2) (‘For all x, x2 is not equal to 2’)

says that whatever number we take, its square is not 2. This is true in the
natural numbers; also it’s true in the integers and in the rational numbers.
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But it’s false in the real numbers and the complex numbers. Likewise the
sentence

∀x (x2 + 1 6= 0)

expresses that −1 has no square root; this is false for all Peacock’s number
systems except the largest, the complex numbers.

There is a pattern here. The two sentences above both have the form

∀x1 . . .∀xn φ(x1, . . . , xn)

where the formula φ(x1, . . . , xn) is ‘quantifier-free’, i.e. contains neither ∀
nor ∃ (and of course in the two examples above, n = 1). A sentence of this
form is said to be ‘universal’. If you have three structures A ⊆ B ⊆ C, and
a universal sentence is true in B, then it must be true in A too, but it need
not be true in C. Dually, an ‘existential’ sentence is one of the form above
but with ∃ in place of ∀. An example is

∃x (2 6= 0 → 2× x = 1)

which says that there is an element x such that if 2 is not zero then 2 times
x is 1. (We said it this way in order to bring the ‘there exists’ to the front.)
The sentence is false in the natural numbers and false in the integers, but
true in the rationals and so on upwards. In fact if A ⊆ B ⊆ C are structures
and an existential sentence is true in B, then it must be true in C too but
need not be true in A.

The process that Peacock described, adding new elements so that oper-
ations make sense in more places, adds to the existential sentences that are
true, and takes none away. (This is true for extensions for the reason given
in the previous paragraph. It’s also true for expansions, since passing to an
expansion never makes a true sentence false, though it gives meanings to
more sentences and so may generate new true sentences.) So we can rea-
sonably ask: Is this a general procedure? Can we start with any kind of
structure and add new elements so as to maximise the number of existen-
tial sentences that are true? A number of people (including Henri Poincaré)
speculated about this question in general terms. The group theorist W. R.
Scott showed in 1951 that if we start from an arbitrary group instead of
the natural numbers, and form extensions so as to increase the number of
true existential sentences not using 6 or→, we reach a natural stopping point
called an ‘algebraically closed group’, which stands in roughly the same re-
lationship to the original group as the complex numbers do to the natural
numbers.
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Then in 1962 Michael Rabin showed how to carry out the same idea,
starting from any structure A at all. We take a set T of universal sentences
true in A. The construction makes repeated extensions, so as to reach a
structure B in which the sentences of T are all still true, but if C is any ex-
tension of B in which the sentences in T are all true, then the existential
sentences true in C are just those true in B. Structures with this property
of B, given a particular set T of universal sentences, are said to be ‘existen-
tially closed’ for T . An important result proved by Rabin was that anything
we can say about elements of B using an existential formula (the same as
an existential sentence, but allowing free variables) can also be said using a
set of universal formulas. More precisely, one can prove from T the equiv-
alence of the existential formula and the conjunction of a set of universal
formulas. In general this set might be infinite.

Now in 1931 Kurt Gödel proved a famous theorem about CFA, the set of
first-order sentences true in the natural numbers using just plus and times
as operations. (CFA stands for ‘complete first-order arithmetic’.) In mod-
ern terms, he showed that no computer could ever be programmed to list
all and only the sentences in CFA. So CFA is enormously complicated. By
contrast Alfred Tarski showed in 1949 that the corresponding set for the
complex numbers is very simple; he described a simple set of sentences
whose first-order logical consequences are exactly the first-order sentences
true in the field of complex numbers. Tarski and his students looked at the
other structures in Peacock’s hierarchy. Tarski showed that the real num-
bers have a well-behaved set of true sentences, like the complex numbers.
His student Julia Robinson showed that the natural numbers can be de-
fined inside the rational numbers by first-order formulas, and it follows
that the set of true sentences in the rationals is as badly behaved as CFA for
the natural numbers.

Rabin’s result showed why the complex numbers are well behaved in
this sense. In them we can say with an existential sentence that a certain
set of equations and inequations (i.e. statements that certain numbers are
not equal) has a solution; this is a statement about the coefficients of the
equations. By Rabin’s result, this statement about the coefficients can be
rewritten with universal formulas. In fact, because of certain pleasant prop-
erties of fields, it can be rewritten as a formula with no quantifiers ∀ or ∃
at all. This allows us to ‘eliminate quantifiers’ from any first-order formu-
las about the complex numbers. A closer analysis shows that through this
reduction we can deduce all true first-order sentences about the complex
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numbers from a set of sentences of the form

∀x∀y∀z . . .∃u∃v∃w . . . φ(x, y, z, . . . , u, v, w, . . .)

where again φ(x, y, z, . . . , u, v, w, . . .) is quantifier-free, and all the ∀’s are
to the left of all the ∃’s. Sentences of this form are said to be ‘universal-
existential’. An example is the sentence

∀x∀y∃u (u2 + x.u + y = 0).

This sentence says that every nontrivial quadratic equation has a solution;
it is true for the complex numbers by the theorem of Gauss that we men-
tioned earlier.

There is a similar quantifier elimination for the real numbers; in fact
Tarski discovered it before the rather easier case of the complex numbers.
How does one find a quantifier-free formula φ(x) that expresses the same as
∃y(y2 = x) in the field of real numbers? Tarski’s solution was (essentially)
to pass to an expansion which has a symbol 6 for the usual order relation
on the real numbers. Then the required formula is 0 6 x.

Tarski’s approach had nothing to do with existential closure. But it was
reworked by Abraham Robinson, who showed that the field of real num-
bers is existentially closed for T , where T is a set of sentences expressing
that the structure is a field in which −1 is not a sum of squares. (The ax-
ioms for fields are universal-existential because of the axiom saying ‘Every
non-zero element has a multiplicative inverse’. But the notion of an exis-
tentially closed structure generalises from universal to universal-existential
sentences, and Rabin’s results still hold in this more general case.)

How do things fare if we move further up the Peacock hierarchy, for ex-
ample adding exponentiation? There has been a lot of work on this recently.
The picture seems to be that the complex numbers are the best-behaved
level. There are quantifier elimination theorems as we go up higher, but
they become very complicated. Tarski himself asked around 1950 whether
there is a quantifier elimination theorem for the field of real numbers with
exponentiation. It was more than forty years before Alex Wilkie gave a
positive answer.

We mentioned some ‘pleasant properties’ of fields. One of them is
worth spelling out. Suppose K is a class of structures. We say that K has the
‘amalgamation property’ if whenever A, B and C are structures in K with
A ⊆ B and A ⊆ B, there are structures C ′ and D in K such that A ⊆ B ⊆ D
and A ⊆ C ′ ⊆ D, and there is an isomorphism from C to C ′ which is the
identity on A. This is true for fields: if A is a subfield of B and C, then
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there is a field extension of D with a field embedding f : C → D that is the
identity on A. (So C ′ is the image of f in D.)

§§§

But we have run ahead of the story. When Peacock wrote, his comments
were part of a report on ‘certain branches of analysis’. What he said was
about the whole organisation of mathematics, but there was no mathemati-
cal subject called the Organisation of Mathematics. By the time Rabin came
to do his work, there was a branch of mathematics called Model Theory,
and Rabin operated within this theory. True, model theory was invented
as a kind of receptacle for results about interpretations of formulas, and it
would never have been invented if the results hadn’t been there to collect.
But the invention of a new discipline is a tale of its own, and we should tell
it if only briefly.

Recall that according to Peacock there are two directions of thought con-
nected with interpretations. In the first direction, we start with a particular
structure A, we provide symbols for talking about A, and we assemble the
facts about A that can be expressed with these symbols. In the second di-
rection we start with a set T of symbolic sentences, and we consider what
interpretations of the symbols will make the statements in T all true. Note
that there is an asymmetry here: in Direction One we have a single struc-
ture and we go to many formal sentences, while in Direction Two we start
with many formal sentences and we go to many structures.

It was more than a hundred years before anybody seriously challenged
this asymmetry. You will find the asymmetry built into Tarski’s account in
his textbook [13] from 1936, though with a very brief apology (on the turn
of pages 119 to 120 in the 1994 edition). Historically this is odd, because
three decades earlier a group of American mathematicians had already set
to work on the proper way to use Direction One. Namely, they started
with a class K of related structures, for example the boolean algebras, and
they wrote down axioms that are true in every structure in K, and which
define K in the sense that every structure in which the axioms are all true
is in fact in K. The best known of these Americans are Edward Huntington
(who handled the boolean algebras in 1904), Oswald Veblen and Charles
Langford.

Tarski’s book was one of the last publications to be written in the old
style. In the 1940s Anatoliı̆ Mal’tsev in Russia, Tarski in America and Abra-
ham Robinson in Britain all switched to a new framework. On the one hand
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we have classes K of structures, on the other hand we have sets T of formal
sentences. One can study the relation ’Every sentence in T is true in ev-
ery structure in K’. Through this relation, facts about first-order sentences
can be translated into facts about structures. For example an early result
of Mal’tsev in this vein was about groups that have faithful n-dimensional
matrix representations, where n is a fixed positive integer. Mal’tsev proved
in 1940 that if every finitely generated subgroup of a group G has this prop-
erty then so does G. His proof showed how to deduce this from a more
general result called the Compactness Theorem, which we will return to.
Another early result in the field, also derived from the Compactness Theo-
rem but closer to Peacock’s interests, was proved independently by Tarski
and Jerzy Łoś: Suppose φ is a first-order sentence, and suppose that for all
pairs of structures A ⊆ B, if φ is true in B then it is also true in A. Then φ
is logically equivalent to a universal sentence. This is a partial converse to
a property of universal sentences that we mentioned earlier.

§§§

To celebrate the new subject some terminology was fixed in the 1950s.
A system (of things) now became a ‘structure’, and a set of formal sentences
became a ‘theory’. When a formal sentence φ is true in a structure A, one
expressed this by saying that A is a ‘model’ of φ, not an ‘interpretation’ of
φ as Peacock would have said. A structure A was said to be a ‘model’ of a
theory T if it was a model of every sentence in T . The subject was called
‘model theory’. (Rudolf Carnap had earlier suggested the name ‘theory of
systems’, but this suggestion fell by the way.)

Peacock’s own word ‘interpretation’ got a new meaning. In the first half
of the twentieth century it became common to think of mathematics as hap-
pening inside set theory. So a structure A is a set-theoretic object, and when
we use A to give meaning to the symbols of a formal language L, what we
are really doing is translating from the language L into the language of set
theory. Hence translations between formal languages became known as ‘in-
terpretations’. But now suppose we have a translation from language L to
language L′, and we have a structure A whose language is L′. Then we can
use the translation to define a structure A′ whose language is L. Namely,
the elements of A′ are the same as those of A, and a relation is defined to
hold in A′ if its translation holds in A (and likewise for operations). In this
case we say that A′ is ‘interpreted in’ A. A slight generalisation allows us
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to take the elements of A′ to be equivalence classes of n-tuples of elements
of A. For example, given the natural numbers N we can define the integers
Z by an interpretation: the elements of Z are the equivalence classes of or-
dered pairs (m,n) of natural numbers, where (m,n) is equivalent to (p, q) if
and only if m + q = n + p, and the arithmetical operations on Z are defined
in terms of those of N so that the equivalence class (m,n) behaves as we
expect the integer m − n to behave. Julia Robinson’s definition of the nat-
ural numbers inside the field of rational numbers was a more complicated
example of an interpretation in the new sense.

The name ‘model theory’ caught on and the subject spread fast. In fact
it spread so fast that many people pronounced in the mid 1960s that the
subject had exhausted itself. I remember being advised, as a DPhil stu-
dent in 1966, to choose another area because model theory was dead. Ironi-
cally 1965 marked one of the decisive moments in the history of the subject,
namely the invention of stability theory by Michael Morley. But again I run
ahead of myself . . . .

With the new terminology in hand, we can state the Compactness Theo-
rem. It says that if T is a set of first-order sentences, and every finite subset
of T has a model, then T has a model. Gödel had proved this in his PhD the-
sis of 1930, but only for countable sets of sentences; independently Mal’tsev
proved it in 1936 for arbitrary first-order languages. (This independence
is not on public record yet; I recently learned from Lev Beklemishev that
the Mal’tsev archives make it clear. Some years later, Abraham Robinson
and Leon Henkin independently reached Mal’tsev’s result by generalising
Gödel’s.)

By the 1950s it had become the fashion in pure mathematics, whenever
one introduced a new kind of structure, to define a class of mappings be-
tween the structures. These mappings would be the ones that preserved
features important in the study of the structures. Model theorists chose a
class of mappings which they called ‘elementary embeddings’. For sim-
plicity I define only a special case here. Suppose A and B are structures
with A ⊆ B. We say that B is an ‘elementary extension’ of A, and A is
an ‘elementary substructure’ of B, if after adding symbols to name all the
elements of A, every first-order sentence true in A is also true in B. For
example if A and B are fields and B is an elementary extension of A, and
a certain element a of A has no square root in A, then a has no square root
in B either. So an important fact about Peacock’s hierarchy was that the
extensions involved were not elementary.

Some important general theorems were proved about elementary em-
beddings. One fact was this. Suppose A is an infinite structure (recall that
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this means the universe of A is an infinite set), and suppose the first-order
language for the signature of A has λ sentences. Then for every cardinality
κ which is at least the cardinality of A and at least λ, A has an elementary
extension of cardinality κ; and for every cardinality κ which is at most the
cardinality of A and at least λ, A has an elementary substructure of cardi-
nality κ. This is a part of the grand theorem known by the grand name of
‘Upward and Downward Löwenheim-Skolem-Tarski theorem’.

The notion of elementary embeddings was important for Abraham Robin-
son. He said that a theory T is ‘model-complete’ if whenever A and B
are models of T with A ⊆ B, B is an elementary extension of A. Model-
complete theories always have a kind of quantifier elimination: every for-
mula is equivalent to an existential formula. So we can eliminate the quan-
tifier ∀; we can eliminate ∃ as well, but not both quantifiers at once.

§§§

Around 1970 a certain description of problem solving became popular
among cognitive scientists. This is not model theory, but it often happens
that the same abstract ideas appear in several disciplines at about the same
time; maybe there is some intangible cross-fertilisation. The picture was
as follows. We have a collection S of ‘states’, which is called the ‘problem
space’. Some of the states are picked out as ‘goals’; if we are in one of these
then we have solved the problem. We are given ways of passing from one
state to another, and one state is picked out as the start state. We solve
the problem by starting from the start state and passing along the allowed
routes until we reach a goal state.

For a model theorist a central problem is to construct a model of a given
theory T . One way of doing it is (remember Peacock) to start with a small
structure and form extensions, until we have all the elements we need. So
take the ‘goals’ to be the models of T , and the ‘states’ to be the substruc-
tures of models of T . There is a technical device that allows us to expand
the language of any first-order theory T in a way that makes T model-
complete; it turns out to be convenient to do this here, so that whenever A
and B are ‘goals’ with A ⊆ B, B is an elementary extension of A. Because
of an amalgamation property of elementary embeddings, we can simplify
the picture without losing any essential information, by imagining that all
the ‘goals’ are substructures of a single very large model of T , known as the
‘big model’ or the ‘monster model’. This setting came into model theory in
the 1970s, though it was a natural consequence of Morley’s 1965 paper.
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There are a number of natural questions we can ask in this setting. For
example, suppose we move through the problem space by adding elements
one at a time (and then closing off under the functions of the big model so
that we get a structure). When A is a ‘state’ (i.e. a substructure of the big
model), two elements b, c of the big model are said to have ‘the same type
over A’ if the result A(b) of adding b to A is indistinguishable from the
result A(c) of adding c. One can make this precise by saying that there is
an isomorphism from A(b) to A(c) that is the identity on A and takes b to c.
An equivalence class of elements under this relation is called a ‘type over
A’. We write S1(A) for the set of types over A. And now we can ask: is
there some bound on the number of elements in S1(A)? For example, must
it have the same size as A itself? It must have at least the size of A, because
we can form an extension A(a) whenever a is an element that was already
in A.

We can also ask how large the class of goals is. In the examples that were
first studied, the goals are the elementary substructures of the big model,
and by the Löwenheim-Skolem theorem there is at least one of these in
every cardinality between the cardinality of the big model and that of the
language, including the cardinalities at both ends. Under these assump-
tions there will be lots of goals. The strongest restriction we can hope for is
that for each cardinality, all of the goals with that cardinality are isomorphic
to each other. In this case we say that the theory is ‘categorical in power’.
We say that the theory is ‘categorical in cardinality κ’ if all the goals with
cardinality κ are isomorphic to each other.

For example if the big model is an algebraically closed field, then its
elementary substructures are its subfields that are algebraically closed. An
old theorem of Steinitz says that two algebraically closed fields of the same
characteristic are isomorphic if and only if they have the same transcen-
dency degree. It follows that the theory is categorical in every uncountable
cardinality but not categorical in the cardinality ω of the set of natural num-
bers. A theory of this kind is said to be ‘uncountably categorical’, and its
models are also said to be ‘uncountably categorical’.

Now, thanks largely to the work of Morley and its development by a
number of people (notably Bill Marsh, Alistair Lachlan, John Baldwin, Sa-
haron Shelah, Daniel Lascar and Bruno Poizat), a whole string of unex-
pected connections between such questions came to light. If a first-order
theory is uncountably categorical, then for each infinite substructure A of
the big model, S1(A) always has the same cardinality as A. If for each infi-
nite substructure A of the big model, S1(A) always has the same cardinality
as A, then various strong amalgamation properties hold, and various fea-
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tures of models must be definable by first-order formulas. The details are
complicated and often involve heavy combinatorics, but the interrelations
that came to light were a positive hanging garden of Babylon. This subject
became known as ‘stability theory’, for the not very convincing reason that
in good cases, cardinalities stay stable as we pass from A to S1(A).

The first cases to be studied, for example that of algebraically closed
fields of a fixed characteristic, were in first-order languages with a count-
able set of symbols. Morley’s Theorem in his 1965 paper had said that if a
first-order theory in a countable language is categorical in some uncount-
able cardinality then it is uncountably categorical. Special techniques were
needed for extending the structure theory of uncountably categorical struc-
tures to uncountable first-order languages, but it was achieved by Steve
Buechler, Ehud Hrushovski and Chris Laskowski. Shelah studied broader
generalisations, some of them quite remote from first-order languages. In
one of his generalisations the class of structures is ‘excellent’; this is a tech-
nical condition which involves amalgamation properties in several dimen-
sions. He showed that an excellent class satisfies Morley’s Theorem. ‘Ab-
stract elementary classes’ are another of Shelah’s generalisations; in them
even the notion of a language goes missing. Only mathematical moun-
taineers survive at this altitude.

§§§

We began with natural numbers, and we generalised them to integers,
rational numbers, real numbers, complex numbers. For Peacock the natural
numbers are the heart of mathematics, and these other generalisations are
justified by their relationship to the natural numbers.

But then we generalised still further, and studied properties of mod-
els of arbitrary first-order theories. Shelah generalised further yet again,
to classes of classes of first-order theories — a subject he very reasonably
called ‘classification theory’, though its methods coincide with those of sta-
bility theory. In his broadest generalisations, even the restriction to first-
order theories vanishes. We seem light years away from the constrained
nineteenth-century world of Peacock, where everything revolves around
the natural numbers.

Not so, said Boris Zilber. If we ask the right model-theoretic questions,
we get straight back — not to the natural numbers, but at least to alge-
braically closed fields; the complex numbers are an algebraically closed
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field. Zilber’s claim is paradoxical. Fields are a rather specific algebraic
notion, and there seems no reason why they should emerge from general
model-theoretic considerations.

Zilber’s proposal was to examine uncountably categorical first-order
theories. In the 1980s he conjectured that every infinite uncountably cate-
gorical structure is equivalent under interpretation to one of the following
structures, all of them important in classical mathematics: an infinite set, an
infinite projective or affine space over a finite field (these are close relatives
of vector spaces over finite fields) or an algebraically closed field. He also
suggested, and in some cases proved, how we can tell which of these pos-
sibilities applies. The conjecture was false, as Ehud Hrushovski proved.
But one could identify the reason for its failure: an algebraically defined
topology called the Zariski topology is definable over algebraically fields
but can’t be reconstructed from pure model theory. Together Hrushovski
and Zilber gave an axiomatisation of Zariski topologies and showed that
Zilber’s conjecture is completely true for ‘Zariski geometries’ (structures
obeying their axioms).

This was less than a derivation of the notion of algebraically closed
fields from purely model-theoretic notions, but it was more than anybody
had expected before Zilber’s conjecture. It was also good mathematics;
Hrushovski applied his and Zilber’s result to find a complete and uniform
solution of the Mordell-Lang conjecture on function fields, a classical prob-
lem in diophantine geometry that had previously been solved only in some
cases. More recently Anand Pillay and Martin Ziegler found a way to elim-
inate the Zariski geometries from Hrushovski’s argument by using another
idea from classical mathematics; but it was the Zariski geometries that were
the key to the original solution of the problem.

Peacock had noted that we can pass to further extensions of the natural
numbers by considering further operations. What happens if we consider
exponentiation? There are some classical problems about the exponentia-
tion function on the complex numbers, some of them reckoned very dif-
ficult. One of these is Schanuel’s conjecture, which says that if complex
numbers a1, . . . , an are linearly independent over the field Q of rationals,
then the field Q(a1, . . . , an, ea1 , . . . , ean) has transcendence degree at least n
over Q. Within the last few years Zilber made a further breakthrough of
a rather gnomic kind. He wrote down a set of axioms for exponentiation
functions on algebraically closed fields, including Schanuel’s conjecture as
a set of axioms. He showed that the resulting class of fields with exponen-
tiation functions is an excellent class in Shelah’s sense, and it is categorical
in the first uncountable cardinal ω1. Therefore by Shelah’s result quoted

16



earlier, this class is categorical in the cardinality of the field C of complex
numbers; so there is up to isomorphism just one way of adding an expo-
nentiation function ex to C so as to get a structure in this class. People’s
hunches differ, but it looks a very reasonable conjecture that the usual ex-
ponentiation function ex on C (got by generalising from exponentiation nx

on the natural numbers) is just such a function. This conjecture implies
Schanuel’s conjecture.

In a hundred years or so we may know whether this conjecture of Zilber
has paid off and led to a proof of Schanuel’s conjecture. That would cer-
tainly give a new use for Peacock’s description of arithmetic as ‘the science
of suggestion’ ([10] p. 199).

§§§

George Peacock planted a seed, and today the tree that bloomed has be-
come a thriving branch of mathematics. I have distorted it a bit by concen-
trating on Peacock’s theme and its transformations. Model theory is much
wider than this; like Walt Whitman it is large and contains multitudes. But
I know I am not alone in feeling that these close interactions with classical
mathematical structures provide a backbone to the subject.

In fact there are further connections between model theory and the
field of real numbers. One is Abraham Robinson’s Nonstandard Analysis,
which constructs infinitesimals by passing to a large elementary extension
of the real number field, so that we can calculate dy/dx by taking dy and dx
to be infinitesimals very much as Leibniz did (Bell [1]). Another is the the-
ory of o-minimal structures, founded by Anand Pillay and Charles Stein-
horn after suggestions by Lou van den Dries, which generalises Tarski’s
quantifier elimination on the field of real numbers roughly as stability the-
ory generalised properties of the complex number field, and has proved
useful for solving classical problems (Van den Dries [3]).

There are several textbooks available, for example Manzano [8], Hodges
[5], Marker [9], Pillay [12] in rough order of progression from elementary
to research level. The most recent developments are still available only
in research papers — for example Zilber [15] for his work on exponentia-
tion in the complex numbers, Grossberg and Hart [4] for the background
on excellent classes, and Wilkie [14] for his work on exponentiation in the
real numbers. Techniques from model theory have spilled over into many
other areas, for example complexity theory (Immerman [7]), software sys-
tem design (Börger and Stärk [2]) and natural language semantics (Peters
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and Westerståhl [11]). The definitive history has still to be written, but there
are some notes on my website at [6].

§§§

George Peacock
1791–1858

§§§
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